トンネル出来形管理のICT化

ー山岳トンネル出来形のMMS計測-

ICT in Management of Finished Tunnel Shape

- MMS Measurement in Mountain Tunnel -

高尾篤志* 倉田桂政** 宮田岩往*

要 旨

国土交通省が策定した CIM 導入ガイドライン (案) に関連した「レーザースキャナーを用いた出 来形管理の試行要領 (案) (トンネル編)」において、現行のトンネル出来形断面管理における、 テープ、標尺、高所作業車等を用いた計測方法からレーザースキャナー (LS) による計測に変更す ることで、出来形断面管理の迅速化、安全性向上が期待されている。LS 計測を行うことで、3 次元 の点群で表現された面的なデータが取得でき、取得した 3 次元点群と 3 次元設計データの比較によ り、面的な出来形確認、出来高数量の算出が可能になる。また、新しい試みとして、モービルマッ ピングシステム (MMS) を用い、トンネル出来形の 3 次元点計測を行った。さらに、計測により取 得した 3 次元点群データとトンネルの CIM モデルを重ね合わせることで、施工情報の見える化を 行った。出来形計測時の情報を CIM モデルに登録することで、維持管理段階において施工履歴を確 認できるとともに、不可視部分の情報も組み込んだモデルであるため、データベースとしての活用 や維持管理段階での活用が期待できる。

キーワード: CIM、3次元点群、トンネル出来形管理、MMS

1. まえがき

国土交通省により CIM 導入ガイドライン (案)¹⁾が 策定され、調査・測量から設計・施工・維持管理までの あらゆるプロセスで ICT 等を活用して建設現場の生産 性向上を図る施策「i-Construction」が推進されている。 そのような情勢の中、建設業界において、ICT の導入や 3 次元データ、CIM モデルの活用に関して様々な取り組 みが行われており、3 次元データの活用として、LS 等 により取得される3 次元点群の利用検討が行われている。

「レーザースキャナーを用いた出来形管理の試行要領 (案)(トンネル編)²⁾」では、地上レーザースキャ ナー(TLS)計測によるトンネル出来形管理の効率化が 期待されている。現行の出来形断面管理における、テー プ、標尺、高所作業車等を用いた計測方法から TLS に よる計測に変更することで、出来形断面管理の迅速化、 安全性向上に寄与すると考えられている。

従来手法の出来形計測では、管理断面のみ計測を行う ため、断面間の情報が取得できず、面的な出来形・出来 高の把握は困難である。出来形の計測において LS 計測 を行うことで、計測箇所の全区間において3次元の点群 で表現された面的なデータが取得できる。取得した3次 元点群と3次元設計データの比較により、面的な出来形 確認、出来高数量の算出が可能になる。

しかし、TLS 計測は、一定区間ごとに機器の設置・ 計測・移動を繰り返すため、計測に時間と手間を要する。 一方で、車載型レーザースキャナーである MMS は、車 両を走行しながら周辺の形状を面的に取得し、計測機器 の設置作業を少なくできることから、現地作業の効率化 が期待される。そこで、本稿では、MMS によるトンネ ルの出来形管理への適用実験を実施して、TLS と同等 の計測精度を得られるかを検証した。また、吹付けコン クリート施工後、覆工コンクリート施工後の2時期に計 測を行い、計測データの比較により、覆工厚の算出を 行った。

TLS、MMS 計測で取得した 3 次元点群データと設計 図書より作成した 3 次元モデルに地盤情報等の属性情報 を組み込んだトンネル CIM データを重ね合わせること で、トンネル施工時の管理情報の見える化を行った。 CIM モデルに出来形計測時のデータを組み込むことで、 工事履歴等の施工時点の情報を保存でき、維持管理段階 においても CIM モデルが活用できる。本稿では、実際 の工事現場においての TLS、MMS での計測結果を用い た出来形の確認、3 次元点群の活用方法について述べる。

*土木本部土木部 **広島支店土木部

2. 3次元データ

2.1 3次元点群

3 次元点群とは、LS 計測等により取得される x、y、z の座標などの属性情報を持つ点の集合である。主な計測 手法として、LS や写真測量における SfM 解析が挙げら れる。SfM とは、対象物の複数方向から撮影した画像 から、特徴点を抽出し、同一箇所の特徴点を重ね合わせ ることで 3 次元座標を取得し、2 次元画像から物体の 3 次元構造を復元する技術である。

LS 計測の場合、レーザーを照射し、その反射から 3 次元空間の座標を取得する。また、同時にカメラ撮影を 行うことで、色情報を取得する。計測された座標と色情 報を組み合わせることで、図-1に示すような色付き 3 次元点群データが取得される。

点群の表現方法として、色付き点群表示、反射強度表 示がある。色付き点群表示では、対象物の形状および、 色彩が表現されているため、視覚的に把握しやすい。し かし、対象の色情報はカメラの撮影画像に依存するため、 暗所等撮影が困難な場所や鮮明な画像が取得できない箇 所では、色付き点群を取得することができない。

対して反射強度表示の場合、レーザーが照射された箇 所の形状が表示されるのでトンネル内等の暗所の形状の 表現が可能である。一方、モノトーンカラーで表示され るため、色付き点群に比べ、点群の判別が難しい。また、 水面や水で濡れている箇所等のレーザーが反射しにくい 箇所のデータは取得できないため、モデル上に空白部分 が発生してしまうという問題がある。

2.2 CIM モデル

CIM モデルとは、3 次元 CAD 等により作成される 3 次元モデルに様々な属性情報を加えたものである。例え ば、構造物の CIM モデルの場合、図-2に示されるよ うな 3 次元モデルを、柱や梁といった部材ごとに分割し、 各部材に形状情報や材質等の属性情報を関連付けること で CIM モデルとして成立する。属性情報を付与するこ とにより、数量の算出や履歴の確認といった、施工や維 持管理の段階においてモデルの運用が可能となる。

山岳トンネル工事において CIM モデルを構築するに あたり、基本となる3次元モデルは、国土地理院から公 開されている基盤地図情報、およびトンネル線形情報の 3次元データと、地質平面図・地質縦断図の2次元図面 を組み合わせて表示させることで、図-3に示すような 3次元モデルとした。

また、属性情報として、日々の掘削管理に使用してい る測量・計測システムなどで得られる切羽情報(切羽の 写真・切羽観察記録・地山評価点)、支保エパターン、 削孔検層システムなどによる切羽前方探査情報、ボーリ ングデータ、施工後の計測データなどの情報を3次元モ デルに取り込んで連携させる。これにより、山岳トンネ ル工事に関する施工情報を可視化・一元管理できるトン ネル CIM モデルを構築した。

このトンネル CIM モデルは、切羽ごとの切羽観察記 録がデータベース化されており、切羽ごとの切羽写真や 切羽断面の地山評価点を確認できる。また、図-3に示 すように地山等級に合わせて実際に設置された実施支保 エパターンがパターンごとに色分けされて表示される。 この CIM モデルには、他にもボーリングデータや削孔 検層システムデータなどの切羽前方探査情報を統合して 表示させることができ、モデルから削孔検層システムに よる削孔エネルギー値グラフを参照することもできる。

図-1 色付き3次元点群

図-2 3次元モデル

図-3 山岳トンネル CIM モデル

トンネル CIM モデルを構築するにあたり、航空測量 などによって取得される大量の点群データを統合表示で き、大量データの高速処理が可能で高いレスポンスを持 つパスコ社保有の3次元基本ソフトウェア「PADMS」 をベースとして、それを山岳トンネル CIM モデル用に カスタマイズし運用し、LS 計測によるトンネル出来形 情報を登録した。

3. MMS計測精度検証

3.1 計測諸元

広島県呉市にある呉市市街と阿賀・広方面を結ぶ約 2.6km のバイパス道路のうち約 1.7km が休山トンネル (掘削断面積 64.0~68.1m²、内空断面積 56.0m²)である。 休山トンネルの呉市街側、698m にあたる休山トンネル 長迫工事において、吹付けコンクリート完了後と覆エコ ンクリートの打設完了後に計測を実施した。計測範囲と して、坑口から約 300m までの区間を対象とし、その 中で管理断面を 3 箇所設定した。

TLS は、CIM 導入ガイドライン(案)において、面 的な計測を行い、トンネル覆エコンクリートの出来形計 測・出来形管理方法が示されている。ただし、TLS 計 測では、機器の設置・計測・移動を繰り返すことになり、 計測に時間を要する。そこで、今回の計測では、より効 率的な計測を目指し、MMS による計測も同時に行い、 トータルステーション(TS)、TLS 計測との比較を行っ た。その計測状況を図-4に示す。

また、各手法で取得したデータを工事で管理している 座標へ位置補正を行うための調整点と、位置精度の確認 をするための検証点を設置した。そして、それらの位置 座標を TS で取得した。

MMS の機器仕様と計測諸元を表-1に示す。「レー ザースキャナーを用いた出来形管理の試行要領(案) (トンネル編)」では、計測密度を 5000 点/m² 以上に 保つことが規定されており、MMS 計測では、この計測 密度を確保する計測諸元を設定した。

3.2 MMS の位置補正

MMS は、搭載された GNSS、IMU などを用いて自己 位置を測定するため、GNSS の衛星情報が不可視となる トンネルでは、MMS で取得される点群(MMS 点群) の位置精度が低下する。位置精度の低下を防ぐため、調 整点を用いた位置補正を実施した³⁾。位置補正は、調 整点と MMS 点群の三軸方向の較差を補正量とし、調整 点間の補正量は前後の調整点と MMS 点群の較差から線 形補間により求めた。調整点の設置間隔は、トンネル出 来形管理における一般的な管理断面の間隔である 40m ごとに設定した。その結果、MMS の位置補正により、 最大 1.5m 程度あった検証点の位置座標との較差が 0.05m 以下に改善された。

図-4 TLS、MMSの計測状況

表一1 MMS 機器仕様 · 計測諸元

Į	目	内容		
走行速度		10km/h		
レーザ	台数	1台 RIEGL社VQ-450		
スキャナ	照射数	550,000発/秒		
	スキャン数	200回転/秒		
	照射角度	360°		
	計測精度	0.008m(50m先)		
計測点	進行方向	0.014m		
間隔	横断方向	0.014m(6m先)		

3.3 LS計測による断面形状の取得

TLS や MMS のような LS 計測では、形状の確認は任 意の断面を抽出し、設計断面形状との比較により計測を 行う。本計測により取得した、TLS および MMS の断面 形状、同一地点における TS 測点を結んだ断面形状を図 -5に示す。TS 断面に対して、面的な計測が可能な LS 計測では、連続的な断面形状の抽出が可能である。また、 TLS と MMS の断面を比較すると、較差が 1mm 程度で あった。したがって、TLS と MMS では同等の断面形状 が取得できていることが分かる。

3.4 計測時間の比較

TS、TLS、MMS の坑口から 300m 区間の計測に要し た作業時間を表-2に示す。この作業時間は、計測前の ターゲット設置等の準備時間を除いた計測のみに要した 時間である。TS の作業時間が 60 分、TLS が 120 分で あったのに対し、MMS は 6 分で計測作業が終了しており、MMS の適用は施工への影響が少ないと考えられる。

4. 3次元点群を用いたトンネル出来形計測

4.1 トンネル内空の計測

3 次元点群データを用いたトンネルの出来形管理では、 LS 計測により作成した 3 次元点群モデルより、出来形 計測を行う管理断面を抽出し、計測断面形状と設計断面 形状の比較や、モデル上での内空高や内空幅の計測によ り出来形の確認を行う。トンネル出来形管理において、 一般に内空高と内空幅は、センターライン(C.L.)とス プリングライン(S.L.)において計測されるため、モデ ル上で計測を行う際は、計測の高さ、または位置を固定 し、同一断面上の、C.L.および S.L.での計測を行う。ま た、図-6に示すように、断面モデル内に C.L.と S.L.を 表示させることで、モデル内における内空高・内空幅の 確認を容易にする。

4.2 3次元点群ヒートマップ表示

3 次元点群は特定の条件の下で解析を行い、ヒート マップ表示を行うことができる。図-7は吹付けコンク リート完了時点において計測した 3 次元点群データを 50cm×50cmのメッシュでヒートマップ表示したもので ある。解析の条件として、掘削の設計形状と3次元点群 の座標値の差分を参照している。適正に施工が行われて いると赤く表示され、設計形状を侵す場合は青く表示さ れる。今回の解析結果では、図-7に示すように青く表 示される箇所が発生したが、風管・照明・配線等の障害 物により、吹付面の計測が不十分な箇所であった。その 他の箇所は全て赤く表示され、トンネル内空の掘削が適 正に行われていることが確認できた。

表-2 坑口から 300m 区間の計測作業時間

作業項目	作業時間	内訳
TS	60分	設置·計測·移動×3断面
TLS	120分	設置·計測·移動×6回
MMS	6分※	移動計測×1往復
>> 미나수나 \ . ㅋ ١	レターマーの三十回じ住	はによう公面オス

図-7 ヒートマップ表示

図-8 トンネル内部状況

表-3 覆工厚計測結果

30 E		計測箇所								
测品		1	2	3	4	5	6	Ø		
	設計(mm)	350	350	350	350	350	350	350		
50m地点	MMS計測値(mm)	414	405	407	401	398	391	359		
	現行法計測値(mm)	410	400	410	400	400	380	365		
	設計(mm)	350	350	350	350	350	350	350		
140m地点	MMS計測値(mm)	407	402	411	390	406	420	413		
	現行法計測値(mm)	420	400	400	395	400	430	400		
	設計(mm)	300	300	300	300	300	300	300		
280m地点	MMS計測値(mm)	335	352	340	344	336	309	320		
	現行法計測値(mm)	330	345	335	340	335	300	310		

4.3 トンネル覆工厚の計測

3 次元点群データを用いた出来形管理を行うにあたり、 吹付けコンクリート完了時点と覆エコンクリート完了時 点の2時期において、トンネル坑口から300mの区間の MMS 計測を実施した。計測時点のトンネル内部の状況 を図-8に示す。計測区間のうち、坑口から 50m 地点、 140m地点、280m 地点の3 箇所を評価断面とし、各断 面7箇所の覆工厚を計測した。図-9は吹付けコンク リート完了後と覆エコンクリート完了後の2時期の3次 元点群モデルを重ね合わせ、任意断面を抽出したもので ある。図中の青の点群が吹付けコンクリート完了時点の ものであり、赤の点群が覆工コンクリート完了時点での 計測結果である。また、覆工厚の計測を行った7点は、 現行の計測点と同等の位置である。表-3に示された 3 次元点群より計測した覆工厚の計測結果より、すべての 測点において覆工厚が十分確保されていることがわかる。 現行法(テープ、標尺を用いた計測)と MMS 計測によ り算出した覆工厚を比較すると、最大で 13mm の誤差 が発生した。

5. CIMモデルにおける3次元点群データの活用

5.1 反射強度表示点群の活用

CIMにおいて活用される3次元モデルとして、3次元 点群データを利用する。吹付けコンクリート完了後に計 測した3次元点群データを、照射したレーザーの跳ね返 りの強さを示す反射強度の属性情報で表示する(図-10)。3次元点群データを反射強度で表示することで、 トンネル内部のような点群の識別が困難な暗所において 形状を鮮明に表現でき、支保工、ロックボルトの位置の 状況等を確認できる。反射強度で表示したモデルを用い ることで、覆工コンクリート施工後に不可視部分となる 支保工やロックボルトの位置確認が可能となる。

図-10 3次元点群(反射強度)

5.2 CIM モデルへの3次元点群の登録

図-11 に示すように、CIM モデルには 3 次元モデル により表現される形状情報の他に、位置情報、切羽観察 記録等の切羽情報、地質縦断図や削孔検層により取得さ れるデータ等の地質情報等の設計・施工時の情報が連携 して表示されている。日々の施工情報や維持管理情報を モデルに追加、更新を行うことで、CIM モデルを有効 に活用することができる。

CIM モデルに登録する施工情報として、出来形管理 の情報が挙げられる。通常、モデルに登録する出来形管 理情報は、出来形帳票である。帳票を登録することで、 検査時の情報を参照することができ、施設管理において 有効である。この上で、CIM モデルに出来形計測時に 取得する3次元点群データの関連付けを行う。施工時の 切羽や支保工パターン等の情報を登録した CIM モデル に計測した3次元点群データを取り込むことで、施工情 報の見える化を実現した。

帳票だけでは施工時の情報を詳細に確認することが困 難である。しかし、3次元点群を登録することによって、 視覚的に履歴を確認することができる。また、CIM モ デルに登録される3次元点群は全ての点が座標値として 数値を持っているため、改めて、任意の箇所で数値を確

図-11 施工情報の見える化

図-12 切羽モデルと点群及び切羽観察記録

認することも可能である。

3 次元点群データを登録することで、通常の3 次元モ デルと属性情報の表示だけでなく、点群により構成され た3 次元モデルと属性情報を連携させて表示できる。図 -12 は、3 次元点群と切羽情報を連携させて表示させた ものである。これにより施工後や維持管理段階において、 切羽観察記録のほか、支保工の状況等の施工時の情報を 確認できる。

6. まとめ

本稿では、3次元点群を用いたトンネル出来形管理の 適用検証を実際の工事現場で実施した。3次元点群を取 得する手法として、TLS、MMS計測を実施し、TSによ る計測結果と併せて比較を行った。その結果、以下の結 論を得た。

- i. TLS と MMS の計測断面形状の較差は 1mm 程度 であり、MMS が TLS と同等の出来形計測ができ ることを確認できた。また、MMS による計測は、 TS や TLS を用いた手法に比べ、現場での計測作 業時間を削減できた。よって、MMS はトンネル 出来形管理へ適用可能であり、TS や TLS に比べ 作業の効率化に寄与できると考える。トンネル坑 外にある工事基準点をトンネル坑内に事前に設置 できれば、調整点の設置等の計測準備時間を大幅 に短縮できると考える。
- ii.トンネル出来形管理において、MMS による出来 形計測を行った。すでに出来形管理要領が存在す る TLS 計測を同時に行うことで、MMS による出 来形計測が可能であることを確認した。吹付コン クリート完了後と覆エコンクリート完了後の2時 期の3次元点群データより、覆工厚の算出が容易 に行えることが分かった。3次元モデルを用いた 出来形管理では、管理断面以外の任意の箇所での 出来形が確認でき、3次元点群データのヒート マップ表示により、面的かつ視覚的に出来形を確

認できる。しかし、仮設物の存在により死角があ る場合、ヒートマップ表示で異常値が出てしまう など課題が残った。

【参考文献】

- 国土交通省、「CIM 導入ガイドライン(案)」、平成 30年3月
- 2) 国土交通省、「レーザースキャナーを用いた出来形管 理の試行要領(案)(トンネル編)」、平成29年3月
- 3) 井関禎之、其阿彌大祐、五十嵐善一、浅井亮治、間 野耕司、西村 修、倉田桂政、「2017. MMS による トンネル出来形管理への適用検証」、日本写真測量学 会平成 29 年度秋季学術講演会発表論文集、pp. 93-96

トンネル外周装薬孔のノッチを利用した 余掘り低減発破工法

Blasting Method to Reduce Overbreaks Using Notched Blast Holes

on Outer Circumference Line of Tunnel

塚本耕治*浜田 元*浅野 剛**

要旨

長距離・大断面の山岳トンネル工事において、コスト低減、事業効果の早期発現といった観点から急速施工のニーズが高まっている。急速施工を実現するには、余掘りの低減や地山の安定性確保 などを図り、効率的な掘削を行うことが重要である。ここでは、効率的な発破を実現するための有 力な方法として、トンネル外周装薬孔にノッチ(切欠き)を形成して発破する方法に着目し、数値 解析、要素実験、現場実験から本発破方法の余掘り低減効果を確認したので報告する。

キーワード:山岳トンネル、制御発破、ノッチ、ウォータージェット

1. まえがき

山岳トンネル工事において、発破方式で掘削を行う場 合の主な作業は、①穿孔・装薬・発破、②坑外へのずり 運搬、③支保工の設置の3つに大別される。①~③の各 作業の時間は、1施工サイクルの中で各々約3分の1を 占めており、同時並行で作業することが難しい。そのた め、山岳トンネルの急速施工を実現するには、各々の作 業を高速化するとともに、作業のロスを最小化し、作業 効率を向上することにより、作業時間を短縮することが 必要となる。

発破掘削においては、余掘り(計画断面より大きく掘 削される部分)が大きくなると、坑外に搬出するずり量 の増加に加え、吹付けコンクリートや覆工コンクリート の量が増えてコスト増になるとともに、工程の遅れを生 じることになる。発破時の余掘りを低減する有力な方法 としては、コンピュータジャンボを用いた装薬孔の穿孔 精度の向上、芯抜き部や最外周孔の孔数や間隔を考慮し た発破パターンの採用や高精度の電子電管を用いた爆砕 方法の工夫などが挙げられる。ここでは、余掘り低減の 有力な方法の一つとして、発破時の亀裂進展方向を制御 する方法に着目し、トンネル外周装薬孔にノッチを形成 して発破する効率的な発破工法の開発に取り組んだ。本 報では、発破による亀裂進展の制御に必要なノッチ深さ を把握するための数値解析、必要なノッチを形成する方 法の要素実験、発破掘削による現場実験を行い、ノッチ による余掘り低減効果を確認したので報告する。

2. トンネル外周装薬孔にノッチを形成する技術

トンネル周辺の地山をできるだけ緩めず、さらに余掘 りを低減する発破の方法として、プレスプリッティング やスムースブラスティングなどの制御発破がある。この 制御発破の中で装薬孔の孔壁にノッチを設け、発破の爆 破力をノッチに集中させることでノッチ方向に亀裂を進 展させ、亀裂の方向を制御する手法がある¹⁾。

装薬孔内にノッチを形成する方法には、ウォーター ジェット(以下、WJ)を用いる方法、通常のロッドに ウイングビットと先端ビットを装着した特殊ロッドを連 結する方法³⁾などがある。このうち、WJを用いた方法 では、装薬孔内で超高圧水を噴射して孔内表面の岩石を 切削することにより、ノッチを形成する。

トンネル外周装薬孔に WJ でノッチを形成する方法は、 以下の手順で行う。

- i. 削孔した装薬孔内に図-1のようにノズル、ノズ ルヘッド、ランス(超高圧水をノズルヘッドに流 通させる管)から構成される WJ ノズルツールを 挿入
- WJ ノズルの姿勢をノッチ形成方向にあわせて セット
- iii. 超高圧水を噴射しながら WJ ノズルを一定速度で
 引き出し、装薬孔の孔壁の 2 か所に連続的して
 ノッチを形成

*技術研究所土木研究グループ **技術研究所

図-1 ノッチの形成方法

3. 発破による亀裂進展の数値解析

3.1 数値解析の目的

亀裂進展の方向制御に必要なノッチ深さを事前に把握 することを目的として、発破による亀裂進展の数値解析 を行った。

3.2 数値解析の概要

解析には、発破時の亀裂進展の評価が可能な破壊プロ セス法(Dynamic Fracturing Process Analysis、以下 DFPA) ³⁾を用いた。この DFPA は、破壊力学および有限要素法 (FEM)に基づいた2次元動粘弾性の解析法であり、岩

石内の強度不均一性を考慮した亀裂の生成・進展・連結 などの解析に適用できる。

解析モデルの模式図を図-2に示す。孔径45mmの装 薬孔3孔を孔間距離800mm、最小抵抗線700mmとなる ように解析モデル内に設けた。また、解析モデルの下側 境界に自由境界条件、それ以外の左右および上側境界に は反射波が生じない連続境界条件を与えた。ノッチを形 成した装薬孔近傍の要素分割例を図-3に示す。図のよ うに、装薬孔の2か所に深さ10mmのノッチが形成され るように要素分割を行った。

解析ケースは、表-1に示す5ケースとした。孔あた りの装薬量が通常発破より少ない状態を想定したデカッ プリング係数(De:装薬孔の直径/爆薬の直径)が 1.73 で従来の装薬孔のみの場合を Case1、各装薬孔に深 さ 10mm のノッチ形成した場合を Case2、および深さ 20mm のノッチ形成した場合を Case3 とした。さらに、 Case1 と Case2 に対して孔あたりの装薬量を増やし、通 常発破で使用する装薬量を想定し、デカップリング係数 が 1.50 の場合⁴を Case4 と Case5 とした。

解析対象の岩盤の諸物性値は**表-2**に示すとおりで、 等方性の潜在亀裂がない岩盤を想定した。また、解析対 象時間を 3ms(3,000μs)とし、計算時間増分を 0.1μs (10⁻⁷秒)、計算ステップ数を 30.000 回とした。

装薬孔内の孔壁に作用させる発破の圧力には、装薬孔の体積変化やデカップリングによる圧力変化を表現した

図-3 ノッチ深さ10mmの要素分割例

表-1 解析ケース

解析 ケース	デカップリング 係数(De)*	ノッチ の有無	ノッチの深さ (mm)
Case1	1.73	無	-
Case2	1.73	有	10
Case3	1.73	有	20
Case4	1.50	無	_
Case5	1.50	有	10
*De=1 73 · 爆	蓮径の26の場合	De=1 50 · 爆	蓮径の30の場合

表-2 解析対象の諸物性値

P波速度(V _P)	6,000 m/s
S波速度(V _S)	3,464 m/s
密度(ρ)	$2,700 \text{ kg/m}^3$
ヤング 率(E)	80 GPa
ポアソン比(<i>u</i>)	0.25
Q値(Q)	10
平均圧縮強度 (S_c)	250 MPa
平均引張強度 (S_t)	18 MPa
破壊エネルギー(G_{f})	300 Pa•m
均一性係数(m)*	5
内部摩擦角(Φ)	60°

*岩盤内の強度不均一性を表現するための係数

JWL 状態方程式による値を用いた⁵。起爆条件は、装薬 孔の一つが起爆により亀裂が進展し終息するまでにかか る時間に比べて DS 雷管の起爆時間差の方が大きいこと から各装薬孔の起爆を段発発破として扱い、雷管の起爆 時間差を 1ms に想定した⁵。具体的には、装薬孔 1 を時 刻 0ms に起爆してから 1ms 後の時刻 1ms に装薬孔 2 を 起爆、さらに 1ms 後の時刻 2ms に装薬孔 3 を起爆した。

解析結果については、最外周孔の発破により孔壁周辺 に生じる亀裂の位置で、当たり(計画断面より内空側に 残留する部分)と余掘りになることから掘削計画線から 連結した亀裂までの鉛直距離の最大値でノッチの効果を 評価した。

3.3 解析結果

ノッチがない装薬孔でデカップリング係数が 1.73 で ある Casel の結果を図-4に示す。図は、時間の経過に 伴う最大主応力分布と亀裂進展の状況を示し、寒色系が 圧縮応力、暖色系が引張応力を表している。装薬孔1の 発破から 90µs 後では、最大主応力のうち圧縮応力波が 先行して放射状に伝播し、続いて引張応力波が伝播する。 この円周方向の引張応力波により亀裂が装薬孔から放射 状に進展する。引張応力は亀裂先端部および装薬孔周辺 で大きいことが分かる。450µs 後では、圧縮応力波が装 薬孔2付近まで伝播するが、新たな亀裂の進展は見られ

(b) 450µs 経過後

(c) 3,000µs 経過後

図-5 Case2 ノッチ深さ 10mm の 亀裂進展状況 (De=1.73)

ない。3,000µs後では、装薬孔2および装薬孔3の発破 が終了するが、装薬孔間で亀裂が連結に至っていない。

装薬孔に深さ10mmのノッチを形成した Case2 の結果 を図-5に示す。90µs 後では、引張応力波の伝播に伴 い、新たな亀裂のうちノッチの方向の亀裂がより長く進 展する傾向が見られる。450µs 後には、ノッチ先端から の亀裂が進展し、装薬孔 2 付近まで到達する。発破後 (3,000µs 経過後)には、装薬孔間の亀裂が連結してい る。なお、掘削計画線から連結した亀裂までの鉛直距離 の最大値は70mmで、当たりが残る結果になった。装薬 孔に深さ20mmのノッチを形成した Case3 の結果を図ー 6に示す。掘削計画線から連結した亀裂までの鉛直距離 の最大値は40mmで、当たりが残る結果になった。ノッ チ深さが10mmの場合と同様にノッチの方向に亀裂が進 展し、ノッチが長くなるほど、当たりや余掘りの低減が 期待できる。

ノッチがない通常の装薬孔でデカップリング係数 1.50 である Case4 の結果を図-7に示す。図-4のデカップ リング係数 1.73 に比べて亀裂が進展し、装薬孔間の亀 裂が連結するが、当たりが 245mm と大きい。同様に、 ノッチ深さが 10mm でデカップリング係数 1.50 である Case5 の結果を図-8に示す。爆薬量が大きすぎると、 起爆初期の段階で装薬孔周辺に比較的大きな亀裂が生じ、

図-6 Case3 ノッチ深さ 20mm の 亀裂進展状況 (De=1.73)

図-7 Case4 ノッチなしの 亀裂進展状況 (De=1.50)

この一部の亀裂がノッチからの亀裂よりも進展する傾向 が見られた。そのため、図-5のようなノッチ方向に亀 裂が進展する傾向が見られず、230mmの余掘りが生じ た。

以上の結果から、ノッチ深さが10mm以上であれば、 通常発破の場合より少ない装薬量でもノッチの亀裂進展 の方向制御の効果が現われ、当たりや余掘りの低減を期 待できる。一方、ノッチが存在しても必要以上の爆薬量 で発破を行う場合には、通常発破と同程度の当たりや余 掘りが生じ、ノッチによる亀裂進展の方向制御が期待で きないことが分かった。

4. WJによるノッチ形成の要素実験

4.1 実験の目的

WJ によるノッチ形成において、ノッチ深さを 10mm 以上にするためのノズルの移動速度を把握することを目 的として、室内実験を行った。

4.2 実験の概要

装薬孔の孔径を φ45mm と想定し、花こう岩(一軸圧 縮強度:150N/mm²)の試験体を用いて、図-9に示す 自動送り装置にノズルツールを取り付けて WJ による

図-9 ノズル自動送り装置

図-10 試験体固定装置(断面図)

(a) ノズル自動送り装置
 (b) 試験体固定治具
 写真-1 WJ によるノッチ形成実験の状況

ノッチ形成実験を行った。

実験は、装薬孔を模擬するため、図-10の試験体固 定治具内に固定した2個の花こう岩試験体(45mm× 45mm×1,000mm)の間をノズルヘッドが通過できるよ うに45mm離してセットする。ノズルヘッドを先端側ま で挿入し、ノズルから超高圧水を噴射しながら自動送り 装置を用いてノズルを一定速度で引き出し、試験体の側 面に連続してノッチを形成した(写真-1)。なお、WJ を使用するにあたり、以下の条件を設定した。

- i. 散水車に貯めた水道水を使用
- ii. 超高圧水ポンプは最高圧力 250MPa、最大吐出量
 45 (/min を使用し、ポンプの吐出圧力は 245MPa
 に設定
- iii. WJノズルは
 0.66mm×2 穴であり、超高圧水ポンプの吐出圧力が 245MPa の場合、吐出水量は 2 穴あたり 19.8(/min

4.3 実験結果

実験から得られたノズルの移動速度とノッチ深さの関係を図-11に示す。深さ10mm以上のノッチ形成には、 1,200mm/min 以下の速度でノズルを移動する必要がある ことが分かった。

5. 現場実験

5.1 実験サイトの概要

現場実験は、一般国道 340 号(仮称) 押角トンネル築 造工事のうち、終点側から掘進するトンネルの切羽で実 施した。実験サイトの状況を写真-2に示す。同工事で は既設トンネルを拡幅し2車線の道路トンネルを新設す る。実験区間の地山は中生代ジュラ紀・高屋敷層の頁岩 で構成されており、支保パターンはCII、一掘進長は 1.2m であった。切羽観察の結果から、地山性状は、実 験区間において概ね同一と判断した。また、切羽の岩片 試料を用いたポイントロード試験の結果から、換算一軸 圧縮強度は 100~200N/mm²であった。

5.2 実験の概要

現場実験は、①ノッチ形成深さの確認実験、②トンネ ル外周装薬孔にノッチを形成して発破する実験の順に 行った。①の実験は、目標深さ10mm以上のノッチを形 成するのに必要な WJ ノズルの移動速度を求めるために 行い、②の実験は、余掘り低減に対するノッチの効果を 検証するために実施した。なお、実験では、地山性状の 違いが発破掘削の結果に及ぼす影響を極力避けるため、 同一の切羽を左右に分けて、ノッチの有無や孔あたり装 薬量の条件を変えた。

 ②の実験を行うにあたり、前述の要素実験の結果 を参考に以下の事項を同一条件として設定した。

- i. 散水車に貯めた水道水を WJ に使用
- ii. 超高圧水ポンプは最高圧力 240MPa、最大吐出水 量 350/min を使用し、ポンプの吐出圧力は 240MPaに設定
- iii. φ0.66mm×2 穴の WJ ノズルを使用(超高圧水ポンプの吐出圧力が 240MPa の場合、吐出水量は 2 穴あたり 19.8ℓ/min)

5.3 ノッチ形成深さの確認実験

a. 実験方法

切羽に装薬孔とは別に穿孔した ϕ 45mm×長さ1.5mの 孔を用い、WJ ノズルの移動速度を変えてノッチを形成 した。その後、 ϕ 45mm孔を ϕ 150mmでオーバーコアリ ングし、ノッチ形成深さを確認した。

b. 実験結果

ノッチ形成深さの確認結果を表-3に示す。ノッチ形 成深さの確認結果から、WJ ノズルの移動速度が最も遅 い実験 No.①-1 におけるノッチ形成深さの平均値は、 12mm であった(写真-3)。一方、WJ ノズルの移動速 度が速い実験 No.①-2 では 8mm、実験 No.①-3 では 5mm であり、深さ 10mm 以上のノッチを形成できなかった。 これらの結果は、ノッチ形成の要素実験から求めたノズ ルの移動速度 1,200mm/min で深さ 10mm のノッチ形成が 可能という結果に比べてノッチの切削効率が低くなって いる。これは花こう岩と頁岩の岩種や強度の違い、亀裂

図-11 ノズルの移動速度とノッチ深さの関係

写真-2 実験位置の状況

表-3 ノズル移動速度の確認実験結果

実験 No.	WJ ノズルの 移動速度 (mm/min)	ノッチ深さ の平均値 (mm)	備考
1-1	500	12	・ポンプの設定圧力:240MPa
1)-2	1,000	8	・ノズル: Ø0.66mm×2穴 (流量:2穴あたり19.80/min)
1)-3	1,500	5	・孔径 φ 45mm, 孔長1,500mm

写真-3 ノッチ深さの確認(移動速度 500mm/min)

の有無などの地山条件のほか、削孔した際の孔壁の凹凸 や孔内に残った掘削ずりなどの施工条件の違いが WJの 切削効率に影響したものと推察される。

上記の結果から、目標深さ10mm以上のノッチを確実 に形成する WJ ノズルの移動速度として、500mm/minの 条件が適切と判断し、後述の実験条件として定めた。

5.4 外周装薬孔にノッチを形成し発破する実験 a.実験方法 実験は、トンネル外周装薬孔の穿孔、同孔内での WJ によるノッチ形成、装薬、発破、3D レーザスキャナに よる掘削断面の測定の順で行った。

掘削発破の実験ケースの一覧を表-4に、実験の発破 パターンを図-12 に示す。切羽左側はノッチを形成し 発破する方法(以下、ノッチ付き発破)、切羽右側は現 場で採用している標準的な発破方法(以下、標準発破) である。いずれの実験ケースとも、トンネル外周装薬孔 の孔間隔は750mm、使用した雷管はDS 雷管で4段とし た。トンネル外周装薬孔の装薬量は、ノッチ付き発破で 0.45kg/孔と 0.30kg/孔の 2 条件とし、標準発破では 0.45kg/孔とした。なお、ノッチによる余掘り低減効果 の再現性を確認するため、実験 No.2-2 と実験 No.2-3 は同一条件とした。

実験にあたり、トンネル外周装薬孔の穿孔を同一精度 で行う必要があった。そこで、切羽にマーキングした穿 孔口にビット先端を合わせ、さらに、切羽後方の鋼製支 保工に取り付けた指示棒を基準にガイドセルの姿勢を定 め、穿孔を行った。トンネル外周装薬孔の穿孔状況を**写** 真-4に示す。

ノッチ形成に用いた装置(ノズルヘッド、ランス、ノ ズル引出し治具)を**写真-5**に、トンネル外周装薬孔に おけるノッチ形成作業の状況を**写真-6**に示す。

また、発破後の余掘りや当たりを把握するため、3D レーザスキャナによる掘削断面の測定を行った。3D レーザスキャナは、Basis 社製の Surphaser 25HSX(測距 精度±1.0mm)を使用した。

b. 実験結果

掘進長 1m 位置における掘削断面の測定結果を図-13 に例示する。同図では、余掘り領域(掘削計画線より外 側の領域)を赤色で、当たり領域(掘削計画線より内空 側の領域)を青色で表示しており、同図中には一掘進長 (1.2m)当たりの余掘り体積を併せて示している。な お、余掘り体積は以下の手順で求めた。

- i. 掘進 10cm ごとの断面測定の結果から、掘削計画 線に対する余掘り面積を算出
- ii. 前後2 断面の余掘り面積から、掘進方向10cmご とに余掘り面積の平均値を算出
- 論:余掘り面積の平均値に各断面の離隔 10cm を掛け て足し合わせ、一掘進あたりの余掘り体積を算出

実験 No.2-1 の結果から、発破後の余掘り体積は、 ノッチ付き発破の場合で 0.153m³、標準発破の場合で 1.016m³ であった。ノッチ付き発破の余掘りは、標準発 破に比べ15%と小さく、ノッチの形成により、余掘りが 85%低減した。また、実験 No.2-2 の結果から、ノッチ 付き発破の余掘り体積は 0.112m³ であり、標準発破の 0.547m³に比べ余掘りを80%低減できた。実験 No.2-3 の 結果から、ノッチ付き発破の余掘り体積は、0.207m³ で あり、標準発破の 0.236m³に比べて、余掘りを 12%低減

表-4 掘削発破の実験ケース

	切羽(さ	ェ側):ノ	′ッチ付き	発破	切羽(右側):標準発破			
実験 No.	装薬孔 の間隔 (mm)	ノッチ 形成 深さ (mm)	装薬量 (kg/孔)	雷管	装薬孔 の間隔 (mm)	ノッチ 形成 深さ (mm)	装薬量 (kg/孔)	雷管
② −1	750	10	0.45	4段	750	-	0.45	4段
②−2 ②−3	750	10	0.30	4段	750	-	0.45	4段

図-12 実験の発破パターン

写真-4 トンネル外周装薬孔の穿孔状況

写真―5 ノッチ形成装置

写真-6 ノッチ形成作業の状況

表-5 余掘り体積と凹凸の標準偏差の一覧

	切羽()	左側):ノッ	チ付き発破	切羽(右側):標準発破			
実験 No.	装薬量 (kg/孔)	余掘り 体積 (m ³)	坑壁凹凸の 標準偏差 (mm)	装薬量 (kg/孔)	余掘り 体積 (m ³)	坑壁凹凸の 標準偏差 (mm)	
2 -1	0.45	0.153	52	0.45	1.016	100	
<u>(2</u>)-2	0.30	0.112	56	0.45	0.547	184	
(2)-3	0.30	0.207	67	0.45	0.236	72	
	平均	0.157	58	平均	0.600	119	

できた。

トンネル坑壁の平滑性については、坑壁の凹凸の平均 値に対するばらつき(標準偏差)により評価し、余掘り 体積の結果と併記した一覧を表-5に示す。実験 No.2-1~No.2-3の結果から、坑壁の凹凸の標準偏差は、ノッ チ付き発破の場合で、それぞれ52mm、56mm、67mmで あり、標準発破の場合で100mm、184mm、72mmになっ た。ノッチ付き発破における凹凸の標準偏差の平均値は 58mm であり、標準発破の平均値 119mm と比べてノッ チにより坑壁の凹凸が半減し、坑壁の平滑性が向上して いることが分かった。

実験 No.②-2、No.②-3 のノッチ付き発破は、実験 No. ②-1 のそれと比べ、孔あたり装薬量が 2/3 (0.30kg/孔) と少ないが、標準発破と比べて余掘り低減効果が認めら れた。これは、装薬孔にノッチを形成することにより余 掘り低減の有効性と孔あたりの装薬量低減の可能性があ ることを示している。 トンネル外周装薬孔にノッチを形成する方法について 数値解析、要素実験および現場実験により、その効果を 検討し、以下の結果が得られた。

- i. 数値解析から、ノッチ深さが10mm以上で、適切 な装薬量を設定すれば、発破による亀裂進展の方 向制御が可能であった
- ii. WJ によるノッチ形成の要素実験や原位置での切 削実験のノズルの移動速度が異なることから、現 場適用時には原位置でのWJ による切削実験を行 い、ノズルの移動速度を決める必要があった
- iii. トンネル外周装薬孔にノッチを形成し発破することで、標準パターンの発破に比べ、孔あたり装薬量が同じ場合で余掘りが85%低減し、また、孔あたり装薬量を 2/3 にした場合でも余掘りが低減した
- iv. 坑壁の平滑性において、ノッチの効果により坑壁 の凹凸の標準偏差の値が半減した

以上から、本発破方法の実施により、余掘りの低減や 坑壁の凹凸を低減できることを確認した。また、発破に よる周辺地山への損傷やゆるみの低減も期待できる。

7. あとがき

トンネル外周装薬孔にノッチを形成した数値解析、要 素実験、現場実験により、余掘りの抑制効果,発破後の 坑壁平滑化の効果を確認できた。今後は、適用事例を増 やして技術的なブラッシュアップを行い、トンネルのコ スト削減と安定性向上を図りたいと考えている。

【参考文献】

- 中川浩二、西田 佑、小野勇司、川上 純、「孔壁に設けられた切り欠きによる爆破クラックとその SB 効果」、 第 373、VI-5、土木学会論文集、pp.131-138、1986.
- 2) 大原 直、椋木淳二、秋吉直義、「ウイングホールブラ スティング工法の開発」、VI-116、土木学会第47回学術 講演会、pp.254-255、1992.
- 3) 福田大祐、金子勝比古、石山宏二、内藤将史、「大口 径ガイドホールを用いたトンネル最外周発破におけ る破断面平滑性に関する数値的検討」、土木学会論文 集 C、Vol.68、No.1、pp.213-223、2012.
- 4)石山宏二、木村 哲、岡村光政、内藤将史、金子勝 比古、福田大祐、「数値解析に基づくガイドホールの 破断面平滑効果」、VI-295、土木学会第 63 回学術講 演会、pp.589-590、2008.
- 5) 金子勝比古、山本雅昭、諸岡敬太、田中義晴、「ス ムースブラスティングにおける起爆秒時差の影響」、 火薬学会、Vol.58、No.3、pp.91-99、1997.

6. まとめ

覆エコンクリートの急速施工法の開発 - 分岐配管を用いた圧入による実大打設実験-

Rapid Construction Method for Lining Concrete

- Full-Scale Construction Experiment of Casting Lining Concrete by Press-Fitting Using Branch Pipes -

齋藤隆弘* 浜田 元* 小野 緑* 張 志セン*

要旨

山岳トンネルにおける覆工コンクリートの急速施工法として、セントルの長さを延長し、1日の 施工延長を向上させることを考案した。セントルの長大化に伴う日打設量の増大に対応するために、 コンクリートポンプを2台同時に使用することで時間当たりの打設量を増加させること、さらに側 壁から肩部にかけて、分岐配管を用いて左右同時に圧入してコンクリートを打ち込むことにより、 配管の切り替え回数を低減することが有効と考えられる。本研究では、要素実験において、分岐配 管を用いて左右同時に圧入することにより打ち込む工法の実現可能性と品質への影響を把握した。 また、現場における打設実験により、要素実験結果の再現性と品質への影響を確認した。

キーワード:山岳トンネル、覆エコンクリート、急速施工法、分岐配管、圧入、実大打設実験

1. まえがき

山岳トンネルの急速施工を実現するには、掘削工の急 速化のみならず、後続の覆工コンクリートも急速施工に 対応できる打設方法が求められ、テレスコピックセント ルを応用し、覆工の施工を急速化する事例が見られる¹⁾。 しかしながら、セントルの移動やセントル同士の接合な どにおいて、作業員の高度な熟練技術が必要になり、汎 用性に課題がある。

そこで、高度な熟練技術を必要とせずに月進200m程 度を確保できる工法として、1施工スパン長を通常の 10.5mから2倍程度(18m~21m)に延長させる技術の 開発に取り組んだ。開発に当たっては、施工スパンの延 長に伴い1回の打設量が通常の倍近くになるため、従来 と同程度の時間で打設するには通常よりも単位時間当た りの打設量を増大させる必要がある。その方法として① 2台のコンクリートポンプ使用による2系統からの同時 打ち込み、②左右同時圧入方式による施工の省力化、を 取り入れた。

打設時の機械配置を図-1に、打設方法の概要を図-2に示す。この方法は、長さ 18m 以上のセントルを用 い、図のような機械配置および打設方法により週3回打 設することで、月進 200m 程度の施工を目指したもので ある。その際、左右同時に流し込み後に圧入することで、 配管の切替回数を低減できる。

*技術研究所土木研究グループ

本打設方法の適用にあたり、側壁部から圧入すること について、一般構造物に対する研究例³⁾はあるが、トン ネル構造物に適用した事例は見られないため、圧入が型 枠および品質に及ぼす影響を把握しておく必要がある。 そこで、セントルの左右の側壁部を想定し、前述の②の 打設方法による要素実験を行った。コンクリートの流動 性は、スランプ 15cm 程度の普通コンクリートからスラ ンプフロー35cm~50cm の中流動コンクリートの範囲と した。また、生コンの打ち上がり速さについては、連続 的に圧送するケースだけでなく、通常の打設を想定して 1.5m/h 程度に調整して打ち込んだケースも行い、圧入が 型枠および品質に及ぼす影響について把握した。

さらに、山岳トンネルの覆工コンクリートの施工にお いて左右同時圧入方式による施工実験を行い、実施工に おける本工法の妥当性を確認した。

2. 側壁部を想定した要素実験

2.1 実験方法

a. 試験体概要

試験体の形状と計測器等の配置を図-3に、実験状況 全景と試験体の寸法を写真-1に示す。覆エコンクリー トの巻厚を想定し、試験体の厚さを40cmとした。また、 圧入打設時の施工事例では、圧入口からの打ち上がり高 さが2.5m程度であることから、高さを3.5mとした。ま た試験体の長さは、打ち上がり速さを調整可能にするた めの最小の長さとして1.8mとし、セントルの左右の側 壁部の打設空間を想定してこの型枠を2基配置した。こ れにコンクートポンプにより圧入口から分岐管を用い左 右同時にコンクリートを打設できる設備を設けた。

圧入口を設置した面の型枠はセントルの型枠面を想定 し、反対側の型枠面は地山側を想定したものである。圧 入口を設置した面の型枠には、圧力計を取り付け、打ち 込み時の側圧を計測した。コンクリートの打ち上がり高 さの測定には、型枠上方に設置したレーザー変位計を用 いた。コンクリート配管は、実施工の覆工コンクリート と同様に6インチとし、最大理論吐出能力35m³hの定置 式コンクリートポンプを使用した。

b. 配合

コンクリートの配合表を表-1に示す。コンクリート の配合は、スランプ15±2.5cm、呼び強度21N/mm²の普 通コンクリート、スランプ18cm~21cmの流動化コンク リート、中流動コンクリートの3種類を設定した。流動 化コンクリートおよび中流動コンクリートは、スランプ 15cm、呼び強度27N/mm²のコンクリートに、増粘剤1液 型の流動化剤を後添加して製造した。

c. 実験ケース

実験ケースを表-2に示す。打ち込み方法としては、 1本の配管を使って、コンクリートポンプから型枠に圧

図-3 試験体形状と計測器等の配置

※1 (橙色点線)は、表-2中の case5 から case9 において-1 で 示されるケース、※2 (黄緑点線)は-2 で示されるケース

写真-1 実験状況全景と試験体の寸法

表-1 コンクリートの配合表

コンク	呼び強度	W/C	W	С	S	G	CA	スランプ・スランプフロー
リート種	N/mm ²			ģ	%			cm
普通	21	61	170	279	877	975	2.79	15±2.5
流動化	27	51.5	171	332	820	986	3.32	18~21
中流動	27	51.5	171	332	820	986	3.32	35~50(スランプフロー)
※W・水 C・普通ポルトランドセメント S:細骨材 G・粗骨材 CA:流動化剤								

表 _2	宇齢ケーフ	

			<u>.</u>	-					
実験 ケース	供試体 番号	打ち込み 方法	打ち上にり速さ	が	コンクリー ト種類	圧送量 (m ³ /h)	締固め		
case1	同左	単独圧入	調整な	ι	中流動	16	型枠バイブレータ ※2		
case2	同左	単独圧入	調整な	ι	中流動	32	型枠バイブレータ ※2		
case3	同左	単独圧入	調整な	ι	普通	16	50cm毎 棒バイブレータ		
case4	同左	単独圧入	調整な	ι	流動化	16	50cm毎 棒バイブレータ		
5	case5-1	分岐圧入	調整な	ι	中流動	8	型枠バイブレータ ※1		
caseo	case5-2	分岐圧入	調整な	ι	中流動	8	型枠バイブレータ ※2		
	case6-1	分岐圧入	調整な	ι	中流動	16	型枠バイブレータ ※1		
caseo	case6-2	分岐圧入	調整な	ι	中流動	16	型枠バイブレータ ※2		
7	case7-1	分岐圧入	1.5m/	h	普通	16	50cm毎 棒バイブレータ		
case/	case7-2	分岐圧入	1.5m/	h	普通	16	50cm毎 棒バイブレータ		
	case8-1	分岐圧入	1.5m/	h	流動化	16	50cm毎 棒バイブレータ		
caseo	case8-2	分岐圧入	1.5m/	h	流動化	16	50cm毎 棒バイブレータ		
00000	case9-1	分岐圧入	1.5m/	h	中流動	16	型枠バイブレータ ※1		
Casea	case9-2	分岐圧入	1.5m/	h	中流動	16	型枠バイブレータ ※2		
case10	同左	流し込み	1.5m/	h	普通	1	50cm毎 棒バイブレータ		
case11	同左	流し込み	1.5m/	h	中流動	-	型枠バイブレータ ※1		
※1 打	※1 打設高さが、1.5m、2.5mに達したときに、それぞれ10秒作動、打設終了時に20秒作動								

※2 型枠バイブレータを打設終了時のみ、20秒作動

入した「単独圧入」、分岐配管を使用し左右の型枠に同時に圧入した「分岐同時圧入」、流し込みによる打設を 模擬してコンクリートポンプ車のブームを用いた「流し 込み」とした。ここでCase5~Case9は、分岐によりケー スごとに同時に打ち込んだものである。

圧入による打ち込み時のコンクリートポンプの圧送量 は2段階に設定した。また、時間当たりの打ち込み量を 実施工に合わせ16m³~32m³程度としたケースと、打ち 上がり速さをセントルの設計において想定している 1.5m/h程度に調整したケースを設定した。後者について は50cm打ち上げるごとに20分打設を中断することで、 時間当たりの打ち上がり速さをおおよそ1.5m/hとした。

締固めには、普通コンクリートおよび流動化コンク リートの場合、打ち上がり高さ50cmごとに、棒状バイ ブレータ(φ40)を、中流動コンクリートでは型枠バイ ブレータ(高周波振動モータ、出力550kw)を用いた。 また中流動コンクリート使用時には、打設終了時のみ型 枠バイブレータを20秒作動させたケースと、これに加え 打ち上がり高さ1.5m、2.5mの時点でも型枠バイブレー タを10秒作動させたケースを設定した。

d. 測定項目

打設時には、コンクリートのスランプ、空気量、温度 を測定するとともに、打ち上がり高さ、型枠に作用する 側圧を計測した。打設後には、目視観察を行うとともに、 コア採取による圧縮強度試験を実施し、標準水中養生に よる圧縮強度と比較した。

2.2 実験結果

a. 分岐同時圧入打設の左右均等性

分岐管を経由し、左右の圧入口から同時に打ち込む場 合、既に打ち込まれたコンクリートの状態により、左右 均等に打ち込むことができず、型枠に偏圧が生じる可能 性がある。このため「分岐同時圧入」のケースで時間ご との打ち上がり高さを左右で比較した。図-4に打ち上 がり速さを1.5m/hに調整した、中流動コンクリート使用 時の打ち上がり高さを示す。左右の打ち上がり高さの差 は50mm以内に収まっており、これは普通コンクリート においても同様の結果であった。このことから、圧入し て打ち込む際には配合によらず、分岐した配管により左 右均等に打ち込まれることを確認した。

b. 型枠に作用する側圧

圧入によりコンクリートを打ち込む場合、側圧にはコ ンクリートポンプによる圧送圧の影響による圧力増が懸 念される。このため、側圧は既往の知見³⁾における傾向 とは異なる可能性があり、実施工の前にその傾向を把握 する必要がある。ここでは、側圧に対する打ち上がり速 さ、コンクリートの流動性、打ち込み方法、時間当たり の圧入量が側圧に及ぼす影響を確認した。ここでの側圧 の比較対象としてコンクリートを液体として考えた時の 側圧を理論圧力値とし、コンクリートの単位重量に、圧 力計から打ち上がり面までの高さを乗じた値を用いた。

打ち上がり速さを1.5m/hに調整し、分岐させて普通コンクリートおよび中流動コンクリートを打ち込んだケースの側圧を図-5、および図-6に示す。ここでは圧入

による影響が最も大きく現れる圧入口直近のNo.2の側圧 を示している。普通コンクリートでは、打ち込み時に側 圧が理論圧力値を上回るが、生コンの圧送を中断すると その間に徐々に側圧が低下する傾向が繰り返されている。 また、打ち上がり高さが大きくなるにしたがい、側圧の 計測値は理論圧力値よりも小さくなる傾向となった。中 流動コンクリートでも、打ち込み時における側圧は理論 圧力値より1割程度上回るが、中断時間で側圧が低下し 理論圧力値を下回るようになった。このことから圧入に おいて打ち上がり速さを1.5mh程度とした場合では、圧 入口近傍の側圧は、コンクリートの流動性により傾向の 違いはあるが、打ち上がり高さが圧入口から2.5m程度 までの範囲では理論圧力値とあまり差が見られないこと を確認した。

図-7に、普通コンクリートを用いた「分岐同時圧入」 および「流し込み」のケースの打ち上がり高さ500mm ごとの側圧を示す。ここでは、打ち込み中に各打ち上が り高さに最初に達した時点の側圧をピックアップしてい る。打ち上がり高さ2.5mまでは、「分岐同時圧入」に よる打ち込みが「流し込み」による打ち込みよりも2割 程度高い傾向を示す。この高さ以降は、打ち上がり高さ の増大に伴う側圧の上昇が「分岐同時圧入」、「流し込

み」のケースそれぞれにおいて緩やかになり、両者の差 がなくなっている。

図-8に、中流動コンクリートを用いた側圧を示す。 打ち上がり高さが大きくなるにしたがい、「分岐同時圧 入」のケースが「流し込み」のケースよりも側圧が大き くなっている。いずれの配合でも、圧入口近傍では 圧 入したケースの方が流し込みを行ったケースよりも2割 程度側圧が増大している。圧入したケースでは、20分間 流動を休止し、自重で締まったコンクリートに対して再 圧入したために、打ち込み時に側圧が増加したと考えら れる。このことから、「分岐同時圧入」、「流し込み」 のケースのそれぞれにおいて打ち上がり高さが3mを超 えると圧力の増加は緩やかになるが、圧力の差は維持さ れていることが分かった。

図-9に中流動コンクリートを用いて、時間当たりの 圧送量を変えた場合の、打ち上がり高さ500mmごとの 側圧を示す。圧送量は、コンクリートポンプの吐出量を 変えることに加え、分岐により片方の型枠への圧送量を 半減させることで7.8m³/h~31.2m³/hまで変化させている。 ここで圧送量は打ち上がり速さと型枠の断面積から算出

「流し込み」(Case11) 「分岐同時圧入」(Case9-1) 写真-3 中流動コンクリート使用時の仕上がり状況

した。圧力計の位置は図-6と同様である。時間当たり 31.2m³の圧送はコンクリートポンプの最大能力であり、 実施工の圧送量をはるかに超える条件である。この圧送 量でも、理論圧力からの側圧の増加量はいずれの打ち上 がり高さでも0.007MPa程度となり、時間当たりの圧送 量を16m³/h以下にすると理論圧力値とほぼ一致した側圧 となっている。このことから、通常の圧送による型枠へ の過度な負荷は、圧入口近傍でも発生しないと考えられ る。

c. 目視観察結果・コア圧縮強度

写真-2に、普通コンクリートを用いた場合の「流し込み」、「分岐同時圧入」時の仕上がり状況を示す。「流し込み」を行ったケースでは全体的に気泡が確認されるのに対し、「分岐同時圧入」を行ったケースでは、圧入口の直上および供試体の上部に気泡が分布する。また、 圧入口より下部から斜め上方にかけて縞が分布している。 写真-3に、中流動コンクリートを用いた場合の「流し込み」、「分岐同時圧入」時の仕上がり状況を示す。

供試体 番号	打設方法	コンクリー ト種類	コア圧縮強 度(σ28)	コア圧縮強 度/TP 圧 縮強度
case1	単独	中流動	35.0	
case2	単独	中流動	38.6	0.97
case3	単独	普通	43.8	0.93
case4	単独	流動化	40.3	0.96
case5-1	分岐	中流動	35.1	1.06
case5-2	分岐	中流動	36.0	1.08
case6-1	分岐	中流動	41.5	1.01
case6-2	分岐	中流動	41.3	1.00
case7-1	分岐	普通	28.0	1.01
case7-2	分岐	普通	26.9	0.97
case8-1	分岐	流動化	30.6	1.02
case8-2	分岐	流動化	28.9	0.96
case9-1	分岐	中流動	41.0	1.16
case9-2	分岐	中流動	42.0	1.19
case10	流し込み	普通	28.4	1.01
case11	流し込み	中流動	29.4	1.03

表-3 材齢28日におけるコア圧縮強度

※TP:標準水中養生

「流し込み」を行ったケースでは全体的に気泡が確認されるとともに、砂すじが見られる箇所もある。これに対し、「分岐同時圧入」を行ったケースでは気泡などがあまり見られず良好な仕上がりとなった。

表-3に、材齢28日におけるコア圧縮強度を示す。 コアは各供試体につき6箇所採取し、その平均値を示し ている。いずれも呼び強度を上回り、また標準水中養生 によるテストピースの強度と比較して差はほとんど見ら れず、打設方法による強度の有意な差は見られない。

3. 現場における打設実験

3.1 実験概要

実験は、2 車線の道路トンネル(掘削断面積80m²、覆 工設計厚 30cm) で行った。コンクリートの配合は非鋼 繊維を用いた中流動コンクリートである。コンクリート の示方配合を表-4に示す。本トンネルにおけるセント ルは延長 10.5m であり、これを用いて一般的に施工され る、「流し込み」による施工(ケース 1)と、「分岐同 時圧入方式」による施工(ケース 2)を実施した。いず れのケースでもコンクリートポンプは1台とし、配管を 分岐させることにより、左右の側壁部の覆工に生コンク リートを打ち込んでいる。

本工法による側壁部の打設の妥当性を確認するため、 **表-5**に示す項目を測定した。セントルの側圧とコンク リートの打ち上がり高さは、生コン車1台分を打ち込む ごとに記録した。セントルの内空変位はレーザー変位計 を用いて計測した。脱型後には、本工法が覆エコンク リート表面の品質に及ぼす影響を検討するため、目視観 察および写真撮影による仕上がりの確認、透気係数の計 測、シュミットハンマーによる圧縮強度の推定を行った。

表-4	コンクリ	ートの配合
1		

ſ	単位量(kg/m³)								
ſ	W	С	LS	S	G	AD	繊維		
l	175	340	100	789	898	4.4	3.18		
	呼び強度 24N/mm ² 水セメント比:50% 細骨材率 47.2%								
	最大骨材寸法:25mm スランプフロー:35~40cm								
	W:水	C:普	通ポルト	トランド	セメント	、 LS:石	灰石微料	分末	

S:細骨材 G:粗骨材 AD:高性能 AE 減水剤

表一	5	測定項目
-11	<u> </u>	

打設時	 ・セントルの圧力 ・セントルの変位 ・各時間における打設高さ
脱型後	 ・仕上がり状況(ずれ,不具合の有無,模様,気泡の発生,目視観察,写真撮影) ・透気係数測定(トレント法) ・シュミットハンマー

a. 打設状況

配管分岐部の状況を**写真-4**に示す。側壁から肩部に かけての打設状況から、ケース2(分岐同時圧入)では、 圧入口から2.5mの高さまで、左右の圧入口から均等に 打ち込み可能であることを確認した。また、本打ち込み 方法により1つの圧入口から打ち込むことができる範囲 が拡大することで、配管切替回数が低減できることを確 認した。

b. セントルの側圧と打ち上がり高さ

図-10に側壁下部の圧入口近傍の側圧と、圧力計を基 準としたコンクリート高さとの関係を示す。ここでは、 ケース1(流し込み)とケース2(分岐同時圧入)の結果 および理論圧力値を併記している。ケース1(流し込み) では、打ち上がり高さが1.2m程度の範囲で、理論圧力 値とほぼ同じ勾配で圧力が増加するが、コンクリートが

それ以上に打ち上がると、圧力の増加は極めて緩やかに なった。ケース2(分岐同時圧入)でも、型枠の圧力と 打ち上がり高さの関係にはケース1と大きな差が見られ なかった。また、図-10の側圧は、生コン車1台分の打 設終了時の値であるが、打ち込み時、打設停止時におけ る圧力の不連続的な挙動は見られていない。このことか ら、壁厚が30cm-40cmの場合、圧入した場合でもコン クリートポンプによる圧入時の吐出によるセントルの側 圧の増加がないことを実施工で実証できたといえる。

c. 仕上がり状況

覆工コンクリート全体の仕上がりとしては、「分岐同 時圧入」と「流し込み」で大きな差がないことを確認し た。一方、圧入口付近については、圧入による打ち込み を行うことにより、圧入口周囲に縞状の模様が確認され、 また圧入口から上部に 5mm 程度の気泡が集中して発生 した箇所も見られた。しかしながら、実験を繰り返す中 で、圧入が終了し上部配管に切り替える前に十分に締め 固めることで、改善できる見通しも得ている。

d. 非破壊試験

図-11に示すように、1 打設区間ごとに側壁部, 肩部 において5箇所いついて非破壊試験を実施した。非破壊 試験結果を表-6に示す。透気係数試験では、各測点で 3回の測定を行い、測定の平均値を求めた。透気係数は ケース1(流し込み)で0.24~2.21(×10⁻¹⁶)、ケース2 (分岐同時圧入)で 0.26~1.11 (×10⁻¹⁶) となり、部分 的にばらつきの大きい箇所が見られたが、平均値では 「標準」として評価される範囲 4) で、「流し込み」と 「分岐同時圧入」で変わらないことを確認した。シュ ミットハンマー試験から、換算圧縮強度の平均値はケー ス1(流し込み)で29.1N/mm²、ケース2(分岐同時圧 入) で 28.1N/mm² であり、両ケースでほぼ等しい強度で 呼び強度も上回っていた。これらの結果から、「分岐同 時圧入」と「流し込み」によるコンクリートの打ち込み において、覆エコンクリート表面の品質に有意な違いが 生じないことを確認した。

表-6 非破壊試験結果

	ケース①((流し込み)	ケース② (圧入)		
測点	透気係数 (×10 ⁻¹⁶ m ²)	換算圧縮 強度 (N/mm ²)	透気係数 (×10 ⁻¹⁶ m ²)	換算圧縮 強度 (N/mm ²)	
1	0.78	26.6	0.42	28.5	
2	2.21	29.1	1.11	26.6	
3	0.24	29.1	0.46	26.6	
4	0.26	30.4	0.26	30.4	
5	1.37	30.4	1.59	28.5	
平均值	0.97	29.1	0.77	28.1	

4. まとめ

本研究では,覆エコンクリートの急速施工法の要素技 術である分岐配管を用いた左右同時圧入方式での打ち込 みにおいて、要素実験および実施工への適用を通じ、以 下のことを確認した。

- i. 普通コンクリートと中流動コンクリートを使用した場合、コンクリートを圧入して打ち込む際、圧入口から 2.5m 程度の範囲の高さまでは分岐した配管により左右均等に打ち込めることを確認した
- ii.実施工では、圧入口近傍でも、「流し込み」と 「分岐同時圧入」で側圧と打ち上がり高さの間に 大きな差異は見られず,圧力計から 1.2m 程度の 打ち上がり高さまでは理論圧力とほぼ一致し、そ れ以降は側圧の増加が極めて緩やかになることを 確認した
- III. 圧入時には、圧入終了時の入念な締固めによりコンクリートの品質が確保できることを確認した

以上から、本工法が、セントルの特別な補強をするこ となく、通常のセントルの設置方法で実施工に適用でき、 覆エコンクリートの急速施工に寄与する要素技術として 成立することを確認した。

5. あとがき

急速施工法の要素技術である分岐同時圧入方式について、実施工における実現性が確認できた。残る課題であ

- る、誘発目地の設置技術などについて開発を進めている。

【参考文献】

- 西岡 和則ほか、「新型テレスコピックセントル工法 を用いて66時間型枠を存置する効果について」、ト ンネル工学論文集、第24巻、I-5、2014.12
- 大池 武ほか、「コンクリートのポンプ圧入工法に 関する研究」、大林組技術年報、pp.33-38、1992
- 3) 土木学会、「コンクリート標準示方書 施工編」、 pp.142-146、2012
- 4) R.J.Torrent, "A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site", Material and Structures, 25, pp.358-365,1992

天井用車載型乾式研掃装置の用途拡充

-地下鉄および水再生センターへの適用-

Expanding Use of In-Vehicle Type Dry Grinding Device for Ceiling - Application to Underground Railway and Water Reclamation Center -

Application to Underground Kanway and water Reclamation Center -

石井敏之* 木下知樹** 津村匡洋** 石川洋一**

要 旨

道路トンネル天井面の目荒しや塗膜除去作業において、従来人力で行っていたものを地上からの 操作で全てが行えるように機械化した「天井用車載型乾式研掃装置」を開発した。本研掃装置の機 能を拡充し、地下鉄および水再生センターの補修・補強工事の研掃作業に適用した。その結果、施 工能力が人力施工に比して同等以上で、かつ粉塵の飛散防止による作業環境の改善および高所作業 の低減による安全性の向上が図れた。また、仕上がり面の品質の向上を確認した。これらより、本 研掃装置は道路トンネル以外の施設での研掃作業にも適用可能となり、同装置の用途拡充が図れた。

キーワード:研掃作業、機械化、天井面、効率化、省力化

1. まえがき

供用中の道路トンネル等を対象とした補修・補強工事 では、夜間の限られた時間および空間内で作業を完了さ せる必要がある。そのうちコンクリート天井面の目荒し や塗膜除去を行う研掃作業は、高所作業台車上で重量の ある吸引式のディスクサンダーを用いた上向き姿勢での 人力作業となることから、作業の効率化、安全性の向上 および仕上がり面の品質確保等の改善が求められている。

このような状況に鑑み、ボックスカルバート道路トン ネル天井面の研掃作業において、発生した粉塵の飛散を 防止し、高効率な作業が行える「天井用車載型乾式研掃 装置」(以下、研掃装置)を開発し(**写真-1**)、都市高 速道路トンネル剥落防止対策工事に適用した¹⁾。

多くの施設での天井面研掃作業においても、前述した 課題の改善が求められている。そこで、この道路トンネ ル用に開発した研掃装置を、地下鉄の駅ホーム階軌道上 天井面と水再生センターの放流渠天井面の研掃作業に適 用し、用途の拡充を図った。本報では、適用に際して実 施した研掃装置の改造概要と適用結果について報告する。

写真-1 研掃装置

2. 研掃装置の概要

研掃装置は、従来人力で行ってきた天井面の研掃作業 を地上からの操作で全ての作業が行えるように機械化し たもので、装置本体、集塵機、発電機、コンプレッサ、 制御盤等から構成されている。

装置本体の外観を図-1、仕様を表-1に示す。装置 本体は、天井面の研掃を行うケレン機、ケレン機を前後 (走行方向)左右(横行方向)に移動させる架台、およ び架台を昇降させる多段式リフター等で構成されている。

ケレン機は、写真-2に示すように、研掃ヘッド、研 掃ヘッドを天井面に一定の圧力で押し付ける押付け装置、 および架台上を自走させる走行装置等からなり、研掃 ヘッドを天井面に一定圧力で押し付けながら高速回転さ せ、架台上を走行して研掃作業を行う。研掃ヘッドは、 写真-3に示すように、鋼製ビットを配した円盤状の研

*技術研究所土木研究グループ **東日本支社リニューアル技術部

装置部位	項目	仕様		
	走行速度	0.5~10 m/min		
ケレンは総	押付け力	0.2 ~ 0.9 kN		
クレン版	鉛直凹凸	±40 mm 追随		
	研 掃 幅	250 mm		
多段式	昇降高さ	1,200 mm		
リフター	施工高さ	4.3 ~ 5.0 m		
±⊓ /\	走行範囲	2.69 m		
(施工範囲)	横行範囲	1.56 m		
	面 積	4.2 m ²		

表-1 装置本体の仕様

写真-2 ケレン機

掃ディスクとその周囲に設けた二重の飛散防止枠(ブラ シ型、樹脂型)からなる。発生した粉塵については、二 重の飛散防止枠と研掃ディスク内に設けた8箇所の吸引 孔より集塵機で吸引させて粉塵の飛散を防止する。

3. 地下鉄施設への用途拡充

3.1 適用現場の概要

地下鉄駅他構築補修工事での駅ホーム階軌道上天井面 の塗膜除去に研掃装置を適用した。同駅は地下3層構造 になっており、地下2階が下り線、地下3階が上り線で ある。適用した箇所は、**写真-4**に示す下り線駅ホーム 階の軌道上天井面である。集電方式は第三軌条方式であ り、天井面に架線がない構造となっている。施工範囲は、 施工延長140m、施工幅2.96mの約414m²(うち研掃装置 による適用範囲は約272 m²)で、その線形は、駅進入部 に *R*=250m のカーブがあり、それ以降直線となっている。

3.2 研掃装置の改造

道路トンネル用に開発した研掃装置を、地下鉄駅ホー ム階軌道上天井面の研掃作業に適用するため、以下につ いて変更と改造を行った。

従来の研掃装置は、**写真-1**に示したように4トン車 と2トン車の2台の車両編成で移動・作業を行う仕様で あった。今回、地下鉄軌道上で使用するため、研掃装置

写真-3 研掃ヘッド

写真-4 適用箇所(地下鉄)

写真-5 研掃装置の車両編成(地下鉄)

の車両編成は、写真-5に示すように、15トントロ台車 2 台と牽引車としてモーターカーの 3 両編成に変更した。

従来の研掃装置の施工幅1.56mでは、トロ台車の位置 関係から、軌道上天井面の施工幅2.96mのうち両端0.7m の範囲が施工できない。この範囲を少なくするため、装 置本体下端に、写真-6と図-2に示すようなスライド 装置を設け、両側に0.3m ずつ移動可能にして、研掃装 置による施工幅を1.56mから2.16mに拡幅できるように 改造した。このスライド装置は、トロ台車に固定した 溝形鋼250×90(長さL=2.3mの溝形鋼を施工幅拡幅側 の車両限界まで張り出す)上を、装置本体の下端に取り

写真-6 スライド装置

付けたチルタンク(超低床型エンドレスローラ)で装置 本体を両側にスライドさせる機構となっている。これに より、研掃装置の施工幅は、ホーム側の通信線近傍から 壁側のハンチ手前約 0.4m までとなり、人力による施工 範囲を減少させることが可能となった。

3.3 適用結果

a. 適用状況

研掃装置と吸引式ディスクサンダーによる人力施工の 状況を**写真-7、8**に示す。施工時間は、き電停止後の 0:50から通電開始前の4:00までの約3時間であった。 施工手順は以下の通りで、作業の準備・撤収に約1時間 を要するため、実質の研掃作業は約2時間であった。

- i. 研掃装置を駅ホームに入線
- ii.研掃装置を設置後、装置本体をスライド
- iii. ケレン機を天井面に押し付け、走行・横行させて 塗膜を除去(写真-9)
- iv. ケレン機を下降させ、次の研掃位置にモーター カーで移動後、iiiの繰返し
- v. 研掃装置を駅ホームから退出

なお、研掃装置の塗膜除去条件は、現場での条件設定 実験により、ケレン機の押付け力 0.7kN、走行速度 4m/min、走行回数 2~4(同じラインを走行する回数) とした。

b. 施工能力

研掃装置と人力施工による施工出来高を表-2に示す。 なお、作業員の編成としては、研掃装置を使用する場合、 装置の操作者1名、集塵処理等を行う補助員1名、モー ターカー運転者1名の計3名である。人力施工では2~ 4人が1班編成として作業を行った。

作業の準備・撤去時間は、研掃装置が約1.0時間であ るのに対し、人力施工では約1.5時間であった。これは、 研掃装置では全てが車載されているため移動・設置が容 易であるのに対し、人力施工では足場の組立解体や材料 運搬等の作業により多くの時間を要したことにある。そ の結果、研掃装置による施工では、人力施工に比して実 質の研掃作業時間が増加することとなった。

図-2 施工幅拡大方法

写真-7 研掃装置による施工状況

写真-8 人力による施工状況

写真-9 ケレン機の施エパス

項目	研掃装置	人力施工
施工面積	272 m ²	133 m ²
施工日数	15 日	23 日
日平均施工面積	18.1 m ² /日	5.8 m ² /日
日作業員数	3 人	2~4 人
施工能力	6.0 m ² /人日	2.1 m ² /人日

表-2 施工出来高(地下鉄)

表-2より、日平均施工面積は、研掃装置で 18.1m²/ 日、人力施工で5.8/m²/日であった。作業員1人当たりの 施工能力は、研掃装置で 6.0m²/人日、人力施工で 2.1m²/人日であり、天井面の研掃作業に研掃装置を適用 することによって、施工能力が約3倍となり、研掃作業 の効率化が図られる結果となった。

c. 仕上がり面の品質

研掃装置と人力施工による塗膜除去の仕上がり面を**写 真**-10 に示す。目視観察によると、人力施工では仕上 がり面に塗膜除去のばらつきがみられるが、研掃装置で は確実かつ一様に塗膜が除去されており、仕上がり面の 品質が向上している。

4. 水再生センター施設への用途拡充

4.1 適用現場の概要

水再生センターでの狭隘な放流渠の耐震補強工事にお ける天井面の目荒し作業に研掃装置を適用した。なお、 放流渠の耐震補強は、既設構造物コンクリート面に 0.2mの増し厚コンクリートを施工するものである。図 -3と写真-11に示すように、放流渠の内空は、幅 2.5m×高さ 3.0m(4隅に 0.3mのハンチ)の狭隘な矩形 断面である。施工範囲は、施工幅1.8m、施工延長約300 mで、線形が直線となっている。このうち、小型研掃装 置は延長約150mに適用した。なお、天井幅は 1.9mで あるが、両端0.05mに装置の研掃ヘッドが届かないため、 施工幅は 1.8mとした。

4.2 研掃装置の改造

道路トンネル用に開発した研掃装置をそのまま適用す ることは、放流渠の大きさから困難であった。そこで、 装置本体の架台を昇降させる多段式リフターに換えて小 型移動用台車を製作し、その小型移動用台車に架台とケ レン機を配置した小型研掃装置に改造した(写真-12)。 集塵機、ケレン機および制御装置類等は、研掃装置のも のをそのまま利用した。この改造では、ケレン機の横行 方向の施工幅を、1.56m から放流渠の形状に合わせて 1.8m に変更した。

写真-10 研掃による仕上がり面の状況

図-3 放流渠の形状

写真-11 放流渠の外観

写真-12 小型研掃装置

写真-13 小型研掃装置による施工状況

4.3 適用結果

a. 適用状況

適用現場は、ウォータージェット(以下、WJ)による人力施工が標準設計であった。小型研掃装置とWJによる施工状況を写真-13、14に示す。小型研掃装置による施工手順は地下鉄施設への適用時とほぼ同じであるが、移動手段は、底盤にレールを設け、電動式ウインチでけん引した。

小型研掃装置による目荒しの施工条件は、現場での条件設定実験により、ケレン機の押付け力 0.6kN、走行速度 2.0m/min、走行回数1回とした。

b. 施工能力

小型研掃装置とWJの施工出来高および付着強度試験 結果を表-3に示す。なお、作業員の構成としては、小 型研掃装置の場合、装置の操作者1名、装置の移動等を 行う補助員1名の計2名である。WJの場合、高圧ポン プ操作者、WJハンドガン操作者の各1名、清掃および ホース番(WJハンドガン操作交代員)2名の計4名の 編成で作業を行った。

日平均施工面積は、小型研掃装置で 65m²/日、WJ で 130m²/日であり、作業員1人当たり施工面積に換算する と、ともに施工能力は 32.5m²/人日であった。小型研掃 装置の1回の設置での施工は、面積が約 4.5m²(走行 2.5m×横行1.8m)、走行ライン数が9ラインで、作業時 間が装置の移動等を含めて平均で約 25 分であった。今 回の小型研掃装置の適用は、総施工日数が 3.7 日間で、 施工面積が約 240m²と小規模であったため、機械化によ る施工の効率化が十分に発揮できるまでに至らなかった と考えられる。

今回、作業員1人当たりの施工能力は同程度であった が、小型研掃装置を適用することで、作業時に発生した 粉塵の飛散が防止され、閉鎖空間内での作業環境が大幅 に改善された。同時に、無理な上向き姿勢での作業から 解放され、作業員にかかる負担が大きく軽減できた。こ れらより、小型研掃装置の適用によって、天井面の研掃 作業の効率化が図れることが確認できた。

c. 仕上がり面の品質

仕上がり面の目荒しの程度を評価するため、建研式付着力試験を行った。小型研掃装置の施工による付着強度 は WJ より小さくなっているが、一般的な付着強度の規 格値²⁾である 1.5N/mm²の 2 倍程度であり、仕上がり面 の付着性能は十分に得られていることを確認した。

5. あとがき

都市高速道路のボックスカルバート天井面の塗膜除去 に続いて、地下鉄駅ホーム階軌道上天井面、および水再 生センターの狭隘な矩形断面をもつ放流渠天井面の研掃 作業に、研掃装置を適用した。その結果、施工能力は、

写真-14 WJによる施工上状況

表-3	施工出来高	(水再生センター)

項目	小型研掃装置	WJ
施工面積	240 m ²	_
施工日数	3.7 日	_
日平均施工面積	65 m ² /日	130 m ² /日
日作業員数	2 人	4 人
施工能力	32.5 m ² /人日	32.5 m ² /人日
付着強度	2.93 N/mm ²	3.83 N/mm ²

地下鉄駅構造物では吸引式ディスクサンダーによる人力 施工に比して約3倍向上し、水再生センターではWJに よる人力施工と同等であった。また、研掃装置の適用に より、粉塵の飛散防止によって閉鎖空間内での作業環境 が大幅に改善され、さらに高所作業が低減することに よって作業の安全性が向上することを確認した。これら のことから、道路トンネルだけでなく、地下鉄等の施設 に本研掃装置を適用することが可能であり、研掃作業の 効率化および省力化が図れることを確認できた。

今後の研掃装置の適用として、今回適用した地下鉄駅 構造部の地下3階上り線ホーム階の軌道上天井面の塗膜 除去を行う予定である。その適用に際しては、壁側の残 り約 0.4m 部分を研掃装置で施工できるように施工幅を 拡げる改造を実施している。

本研掃装置については、さらなる適用範囲を拡げるこ とを目指すと同時に、補修・補強工事における労働力不 足等への対応を図れる技術として活用していきたいと考 えている。

【参考文献】

- 石井敏之、「天井用車載型乾式研掃装置の開発と現場 適用」、平成27年度新技術・新工法に関する講習会 (一社日本建設業連合会)、pp.12-16、2016.2
- 2) 例えば、NEXCO総研他、「構造物施工管理要領」、平 成 29 年 7 月版、p.III-242

スラブと柱で構成するフラットプレート架構の構造性能

-開口付きスラブのせん断耐力とスラブ有効幅の評価-

Structural Performance of Flat Plate Structure Comprising Slab and Column - Evaluation of Punching Shear Strength of Slab with Openings and Effective Width of Slab –

岸本 剛* 山際 創* 岡 靖弘** 平松一夫**

要旨

スラブが梁を介さずに直接柱と一体化されたフラットプレート構造は、室内に梁型がないことか ら自由な空間構成を可能にする構造形式である。既報で、フラットプレート構造の構造実験を実施 し、曲げ強度に寄与するスラブの範囲を明らかにするなどの基本性能を確認した。今回、さらなる 設計の自由度の拡大を目指し、柱周りに設備配管用の開口を設けたスラブや、バルコニー等の跳出 し部がない側柱や隅柱に取り付くスラブのせん断耐力の評価方法、また、地震力を受けるスラブの 有効幅の算出方法など明らかにするため、構造実験を行った。実験により、構造性能を明らかにす ると共に提案する設計方法の妥当性を確認した。

キーワード:フラットプレート、スラブ、開口、パンチング破壊

1. まえがき

スラブが梁を介さずに直接柱と一体化されたフラット プレート構造は、室内に梁型がないことから自由な空間 構成を可能とする構造形式である。しかし、地震力を受 けた時に、柱からスラブへ伝達されるモーメントによっ て生じるねじれ破壊と、長期荷重と地震力により生じる 面外せん断破壊が同時に発生するパンチング破壊を生じ やすい。また、曲げ耐力算定に考慮できるスラブの範囲 が明確でないことから、地震力をスラブに負担させず、 耐震壁や併設されたラーメン構造で処理する設計が一般 的であった^{例えば、1)}。

そこで、筆者らはフラットプレート構造の耐震性能を 明らかにするため構造実験を実施した^{2)、3)}。その結果、 曲げ耐力に算定できるスラブの幅は、柱幅の3倍まで考 慮できること、スラブ筋量が同じ場合、柱近傍の集中的 な配筋が、広範囲に分散して配筋するよりも多くの地震 力を負担できること、さらに、柱周りを適切にせん断補 強することによりパンチング破壊を防止できることを確 認した。

一方、柱周りに設備配管用の開口を設けたスラブや、 バルコニー等の跳出し部がない側柱や隅柱に取り付くス ラブのせん断耐力(パンチング耐力)の評価方法、さら に、地震時のスラブの有効幅の算出方法などに関する研 究事例は少ない。そこで、今回は、これらを明らかにす ることを目的とした構造実験を実施し、構造性能の評価 方法について検証した。

2. 実験概要

2.1 実験で想定した建物

フラットプレート構造を適用する建物および実験対象 部位を図-1に示す。建物形状は2×4スパンで、柱断面 900×900mm、スラブ厚さ 350mm、柱間距離約 7,000mm

*技術研究所建築研究グループ **東日本支社建築設計部

で、建物には梁型はなく、建物外周部にはバルコニー等 の跳出しスラブを設けない形状である。図中には併せて 実験対象部位と試験体名称を示す。スラブの内、柱と柱 を結ぶ一定幅の範囲を柱列帯とし地震力に効果的に抵抗 できるようスラブ筋を集中的に配筋した。柱列帯の幅は

文献 2)、3) より、建物外周部では柱幅+スラブ厚、内部 では柱幅+スラブ厚×2とした。

2.2 試験体形状

表-1に試験体一覧を、図-2に試験体形状を、表 -2に材料試験結果を示す。試験体は、スラブの有効幅、

	相	相宁动	-7.05						ታ	口力方向			加ナ	」直交方向													
						試験体	2ラブ 厚		柱列制	ħ	柱間帯		柱列幕	ħ	柱間帯	小° `≀∔ `›∕ካ`											
	縮尺	忠 足 威 壊 形 式	柱形状	開口位置	Fc	幅	(mm)	바프	酉	己筋	配筋	바므	酉	己筋	配筋	補強筋											
						(mm)		™⊞ (mm)	スラブ筋	せん断 補強筋	スラブ筋	™⊞ (mm)	スラブ筋	せん断 補強筋	スラブ筋												
No. 1			正方形			1300		420	5-D13 (SD390)	3-D6@100		540		4-D6@100 (SD295A)		12-D6 (SD295A)											
No.1e		757° dd	扁平			1300		320	4-D13 (SD390)	(SD295A)		740	6-D10 (SD295A)	6-D6@100 (SD295A)		16-D6											
No. 2	1/3	げ降伏	げ降伏	げ降伏	げ降伏	げ降伏	げ降伏	げ降伏	げ降伏	げ降伏	げ降伏	∧)// 曲 げ降伏	// Ш [*] 降伏 生行	が 曲 げ降伏 失行	無し	36 2300	2300	120	540	7-D13 (SD390)	4-D6@100 (SD295A)	D4@110 (SD295A)	540		4-D6@100 (SD295A)	D4@110 (SD295A)	(SD295A)
No. 3		JL1]	正方形					1300		420	5-D13 (SD390)	3-D6@100 (SD295A)		420	4-D10	3-D6@100		8-D6 (SD295A)									
No. 4										2300		540	5-D13 (SD390)	4-D6@100 (SD295A)		420	(SD295A)	(SD295A)		14-D6 (SD295A)							
No. 1L-a24				無し	24																						
No. 1L-b24	- 1/2 が破壊 先行	パンチン 1/2 が 映 博 エゴ	パンチン	シートの「加力方向」	24	1350	175	175	175	175	175	625	625	625	625	625	7-D16 (SD490)	5-D6@100 (SD295A)	D16@115 (SD490)	800	6-D13 (SD295A)	6-D6@100 (SD295A)	D6@175	26-D6 (SD295A)			
No. 1L-b48		1/2	先行	ш / Л ///	柱側面	48		175								(SD295A)											
No. 4L-b24				加力方向 柱前面	24	2250		800	10-D16 (SD490)	6-D6@100 (SD295A)	D16@150 (SD345)	625	7-D13 (SD295A)	5-D6@100 (SD295A)		35-D6 (SD295A)											
 ・柱(縮尺1/) 	3 No 1	1e以外)	 BxD=300 	x300 主笛・	12-D1	0 (\$02954)	二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	· 4-D6	060 (SD2051	1)																	

表-1 試験体一覧

・柱 (縮尺1/3、No.1e) : BxD=200x500 主筋: 10-D10(SD295A)、帯筋: 3-D6666(SD295A) ・柱 (縮尺1/2、全試験体) : BxD=450x450 主筋: 14-D19(SD345)、帯筋: 4-D10@75(SD295A) ・開口補強筋: 柱に定着する鉄筋はD10(SD295A)、その他はD6(SD295A)

図-2 試験体形状

曲げ耐力および変形性能を確認するためスラブの曲げ降 伏が先行するように計画した5体、パンチング耐力を確 認するため、パンチング破壊が先行するように計画した 4 体の計9体である。ここで、前者の試験体は、加力装 置の制約上、スラブ幅を直交方向スパン幅 Ly を確保す るため (図-1参照)、縮尺を 1/3 スケールとした。後 者の試験体は、開口周囲の損傷状況の確認に主眼を置く ため、1/2スケールとした。

No.1、No.1e、No.2、No.3、No.4 はスラブ曲げ降伏先 行型試験体である。これらは、中柱と外柱(側柱・隅柱) を取り出した形状で、実験因子を架構形状と柱形状とし た。No.1L-a24、No.1L-b24、No.1L-b48、No.4L-b24 はパ ンチング破壊型試験体である。これらは、外柱を取り出 した形状で、実験因子を架構形状と柱周りの開口の有無、 およびコンクリート強度とした。No.1L-a24 は、コンク リート強度 Fc24 とし、開口を設けない基準試験体とし た。No.1L-b24 および No.1L-b48 は、No.1L-a24 に対して 加力方向の柱側面に開口を設け、コンクリート強度はそ れぞれ Fc24、Fc48 とした。No.4L-b24 は、ト形部分架構 で加力方向の柱前面に開口を設けた。開口の大きさは 150×75mm (実大では 300×150mm に相当) とし、試験 体に2箇所設けた。開口の大きさは設備配管として水道 管や電気管を計4本設置することを想定したものである。 開口周囲にはひび割れ補強用の鉄筋を配筋した。

また、すべての試験体において、柱列帯にはスタ ラップ形式のせん断補強筋を設けた。せん断補強筋の形 状は、両側スラブ付きの場合はキャップタイ形式、片側 スラブ付きの場合は 135°フック付き閉鎖形式とした。 また、柱からスラブ厚の範囲には、パンチング破壊を防 止する補強筋 2) を配筋した。補強筋の形状は一端 90°、 他端 135°フックとし、スラブ上下筋に掛ける形式とした。

柱列帯のうち、柱主筋で囲まれた柱コア内へのスラ ブ筋の定着は機械式定着とした。柱コア外への定着は上 下筋とも折り曲げ定着とし、補強のためコ字形補強筋 (スラブ筋と25d定着)を設けた。なお、柱列帯以外の スラブ筋は直線定着とした。

2.3 加力方法

加力装置を図-3に示す。柱に一定軸力 N(軸力比

柱列带 柱列带 柱間帯 柱列带 柱間帯

a) No. 2

表-2 材料試験結果

(a)鉄筋			(b)コンクリート			
豑	筋	降伏強度		圧縮強度	わり 係数	
呼び名	鋼種	N/mm ²		N/mm^2	kN/mm ²	
D4		387	No. 1	38.1	29.4	
D6*1		423	No.1e	38.7	28.7	
D6 ^{*2}	SD295A	451	No. 2	39.7	29.5	
D10		356	No. 3	41.2	30.1	
D12		347	No. 4	39.7	29.5	
013	SD390	437	No. 1L-a24	27.5	26.4	
D16	SD345	382	No. 1L-b24	27.0	26.4	
DIO	SD490	532	No. 1L-b48	57.3	35.8	
D19	SD345	370	No. 4L-b24	27.5	26.4	

D6*1: 柱带筋、D6*2: 柱带筋以外

 $\eta = N/(\sigma_B \times B_c \times D_c) = 0.1$ 、ただし、 σ_B はコンクリート実圧縮 強度、Bcは柱幅、Dcは柱せい)を与えた状態で、上下 柱のスラブ両端部の加力点変位を逆対称に制御して加力 を行った。スラブと柱が偏心して取付く試験体は、加力 点のスラブの傾きを拘束した。また、スラブ端部では試 験体にかかる治具の重量をウエイトでキャンセルした。

3. 実験結果および検討

3.1 荷重-変形関係および破壊状況

写真-1に No.2、No.1L-b24、No.4L-b24 の最終破壊 状況を、図-4に各試験体の荷重と層間変形角の関係を 示す。

No.1、No.1e、No.2、No.3、No.4 では、各試験体とも スラブ上面に曲げひび割れが発生し、加力の進行ととも

b) No. 1L-b24 写真一1 最終破壊状況

に、柱角を中心として放射状にひび割れが進展した。 R=5.0/1000 rad までに加力直交方向の柱列帯と柱間帯の 界面で曲げひび割れがスラブ全幅に沿って進展した。各 試験体とも、加力方向柱列帯上面では、加力の進行に 伴って曲げひび割れが多数発生したが、柱間帯上面では、 新たに曲げひび割れは発生せず、初期に発生した曲げひ び割れ幅の拡大が顕著となった。曲げひび割れの本数は、 そのひび割れに直交する鉄筋本数の増加に伴って増加す る傾向にある。そのため、鉄筋が密に配筋された柱列帯 上面では曲げひび割れ本数が増加し、鉄筋が少ない柱間 帯上面では、曲げひび割れ本数が増加しなかったと考え られる。

その後、ひび割れの伸展に伴い徐々に剛性が低下し、 最大荷重に到達した。最大荷重以降、No.1、No.2、No.3 では柱角から斜めに伸びるひび割れが、加力直交方向の ねじれにより鉛直方向にずれて開いた。一方、No.1e、 No.4 では、加力直交方向の柱列帯と柱間帯の界面にお いて、引張縁で発生した曲げひび割れがスラブ全幅に 沿って大きく開き、柱際の圧縮縁にてスラブコンクリー トの圧壊が発生した。これらから、No.1、No.2、No.3 ではスラブ曲げ降伏後のパンチング破壊、No.1e、No.4 ではスラブの曲げ破壊と判断した。

No.1L-a24、No.1L-b24、No.1L-b48、No.4L-b24 も、ひ び割れの進展に伴い徐々に剛性が低下し、最大荷重に到 達した。最大荷重以降、柱角から斜めに伸びるひび割れ がスラブ側面まで進展し、加力直交方向のねじれにより

スラブ上面において鉛直方向の段差を生じた。各試験体 とも耐力の低下は概ね緩やかであった。これらから、各 試験体ともスラブ曲げ降伏後のパンチング破壊と判断し た。また、開口の有無を因子とした No.1L-a24 と No.1L-b24 を比較すると、最大荷重は、無開口より有開 口の方が高くなった。これは、加力直交方向の柱列帯ス ラブ筋と平行に配筋された開口補強筋が、柱側面のスラ ブのねじれ抵抗に寄与したためと考えられる。

3.2 各変形成分比の推移

層間変形角におけるスラブ、柱、スラブ・柱接合部の 変形成分比を図ー5に示す。各試験体ともにスラブの変 形が卓越していた。外柱 No.1 より、中柱 No.2 の方が接

図-5 スラブ、柱、スラブ・柱接合部の変形成分比

合部の変形割合が大きい。また、開口の有無によるスラ ブの変形成分に差は見られなかった。

3.3 スラブ筋のひずみ分布

スラブが曲げ降伏後にパンチング破壊した No.3 とス ラブが曲げ破壊した No.4 における柱際のスラブ危険断 面位置(B通り)および加力直交方向柱列帯と柱間帯の 界面のスラブ断面位置(A 通り)におけるスラブ筋ひず み分布を図-6に示す。併せて試験体 No.4 のひび割れ 状況の写真にスラブ筋位置を示したものを写真-2に示 す。いずれの試験体も、加力方向の柱フェース位置に当 たるB通りにおいて柱芯に近いほどひずみが増加し、特 に柱列帯のスラブ筋ひずみ(①~③)は R=20/1000 rad 時には降伏ひずみに達しており、柱間帯のスラブ筋ひず み(④~⑦)と比べて卓越した。要因として、B 通りの 柱列帯には曲げひび割れが発生していたが、柱間帯では 加力直交方向の柱列帯のせん断補強筋がスラブ筋と平行 に密に配筋されていたため、曲げひび割れが発生しな かったことがあげられる。なお、柱間帯のスラブ筋ひず みは最終変形まで弾性範囲に留まった。一方、A 通りに おいては、No.4 では A 通りで全ての測定点で概ね降伏 ひずみに達したが、No.3 では柱芯から最も遠い位置の スラブ筋位置(⑦)のひずみが弾性範囲に留まった。

3.4 剛性に関する有効幅

スラブ幅が片側 Ly/2 を有する試験体 No.1~No.4 に対し 実験より得られた剛性から、スラブの有効幅を求めた。 架構の初期剛性の実験値と有効幅の関係を表-3に示す。 ここで、スラブ全幅に対する有効幅の比(以下、有効幅 比)はスラブ全幅を有効としてスラブ筋も考慮した剛性 計算値に対する実験時の割線剛性の比とした。本実験で は、3.2 節に示すようにスラブの部材角が層間変形角に 対しほとんどを占めているため、ここではスラブの部材 角と層間変形角が等しいとして評価した。また、加力開 始時より徐々に剛性が低下したため、ここではスラブ部 材角が R=0.4~0.5/1000rad 時の割線剛性を初期剛性とした。

有効幅比は $0.4 \sim 0.75$ となり、No.1e を除き RC 規準⁴ に示される 0.75 倍を下回った。この原因として、RC 規 準では、中柱を対象とした実験結果より有効幅を与えて いるが No.1、No.3、No.4 では、跳出し部がない外柱や 隅柱であること、また、適用条件として、スパン長 (*Lx*) に対する柱せい (*c*)の比*c*/*Lx*を 0.2 以上としているが、 No.1e を除き *c*/*Lx* が 0.13 と小さいことなどが影響してい ると考えられる。

有効幅を、文献 ⁹ により評価した。同文献では、有 効幅を加力直交方向のスパン長(Ly)に対する有効幅 の比率(λ)を各方向スパン長、スパン比、柱形状を考 慮し弾性理論で求めたものである。これによると No.1 ~No.4 の有効幅は 0.6 程度となり、今回の実験の範囲で は RC 規準よりも上記の評価方法が適切に評価する結果 となった。

表-3 初期剛性の実験値と有効幅の関係

	初期剛性 計算値 kN/mm	割線剛性 実験値 kN/mm	有効幅比
No. 1	16.7	6.8	0.40
No.1e	16.3	12. 2	0.75
No. 2	29. 5	16.1	0.54
No. 3	17. 1	12.4	0. 73
No. 4	29.5	16.8	0.57

3.5 降伏時の剛性低下率

表-4は、剛性低下率の実験値と計算値の比較を示したものである。実験値は降伏時剛性を初期剛性で除した値とした。ここで、初期剛性(Ko)は $R=0.4 \sim 0.5/1000$ rad時の割線剛性とした。降伏時剛性(Ky)は図-7に示すように、実験時の荷重変形角関係の包絡線と面積等価となるトリリニア・モデルを想定し、層間変形角R=20/1000rad時において履歴面積が同じとなるように求めた降伏時変形角(R_M)と降伏時荷重($Q_{1/50}$)より算出した。また、計算値は、式(1)に示す菅野式⁴)により求めた。実験値と計算値には各試験体でバラツキはあるものの、実験値は計算値を下回った。

 $\alpha_{\nu} = (0.043 + 1.64 \cdot n \cdot p_t + 0.043a/D + 0.33 \cdot \eta_0)(d/D)^2$ (1)

ここで、n: ヤング係数比、<math>d: 有効せい(mm)、 $p_t: 引張$ $鉄筋比 <math>p = a_t/(B \cdot D)$ 、 $a_t: 引張鉄筋断面積(mm^2)、\eta_0: 軸力$ 比、a: シアスパン長さ(mm)、D: 梁せい(mm)

3.6 耐力の評価

表-5に実験値と計算値の比較を、図-8に Qmax/Pmu- P_p/P_{mu} 関係を示す。なお、同図には既報^{1)、2)}の結果も含 めている。また、同図中の実線は、実験値(Qmax)と計 算値(Ppまたは Pmu)が等しい値を示し、この実線を上 回れば実験値が計算値以上であることを示している。ス ラブ曲げ破壊時計算値(Pmu)は、スラブ全幅のスラブ 筋が耐力に寄与するとして式(2)にて算定した。曲げ終局 モーメント(M_v)は略算式 ⁵である式(3)により求めた。 パンチング破壊時スラブ先端荷重計算値(Pp)は式(4)に よった。同式中の終局伝達節点モーメント(Mu)は RC 規準4)に示す式(5)により、モーメントのみが伝達されると きの終局伝達モーメント(Mo)は式(6)により求めた。こ こで、開口の影響は次のように考慮した。開口が加力方 向に対し柱の側面の場合(図-9(a))では、算定断面 の両側面のねじり力により伝達されるモーメント (Mt) において、算定長さを柱せい(c1)から開口の幅(Lop) を減じた長さ(L1、L2)として式(7)で評価した。同様に、 開口が加力方向に対し柱の前後面の場合(図-9(b)) では、算定断面の前後面のせん断力により伝達される モーメント (Ms) において、算定幅 (c2+d) が開口の幅 (Lop) ほど短くなると考え、式(8)で評価した。

$$P_{mu} = M_V / L_o \tag{2}$$

 $M_y = 0.9 \cdot a_t \cdot \sigma_y \cdot d$

ここで、 M_y :曲げ終局モーメント(N・mm)、 a_t :引張 鉄筋断面積(mm²)、 σ_y :スラブ筋主筋降伏点(N/mm²)、 d:有効せい(mm)、 L_o :内法スパン(mm)

$$P_p = M_u / L \tag{4}$$

表-4 剛性低下率の実験値と計算値の比較

	初期 剛性	降伏時 剛性	剛性低下率		
	<i>Ko</i> (kN/mm)	<i>Ky</i> (kN/mm)	実験値 α _{ye} =Ky/Ko	計算値 式(1) <i>α_y</i>	α _{ye} /α _y
No. 1	6.76	1.75	0. 26	0. 31	0.85
No.1e	12.20	2.19	0. 18	0. 31	0. 57
No. 2	16.06	2.75	0. 17	0. 31	0.55
No. 3	12.44	2.30	0. 18	0.30	0.61
No. 4	16.76	3.04	0. 18	0. 31	0. 58

一/ 阵队时间住切异山力法

表-5 実験値と計算値の比較

	計算	筸値	実験値	比較
試験体	P_{ρ}	P _{mu}	Q _{max}	Q _{max} /
	kN	kN	kN	$\min(P_p, P_{mu})$
No. 1	30	25	36	1. 43
No.1e	31	23	37	1.63
No. 2	41	37	48	1. 30
No. 3	26	26	38	1. 48
No. 4	39	37	55	1. 48
No. 1L-a24	73	113	76	1. 04
No. 1L-b24	68	113	78	1. 15
No. 1L-b48	81	113	87	1.07
No. 4L-b24	74	147	128	1. 74

P_p:パンチング破壊時のスラブ先端荷重(文献4)による) P_{mu}:スラブ曲げ破壊時のスラブ先端荷重(文献5)による) Q_{max}:実験時最大荷重

図-8 Qmax/Pmu-Pp/Pmu関係

(3)

$$V_u/V_o + M_u/M_o = 1 \tag{5}$$

$$M_o = M_f + M_s + M_t \tag{6}$$

ここで、 V_u :終局伝達鉛直力(N)、 M_u :終局伝達節点 モーメント(N・mm)、 V_o :鉛直力のみが伝達されるとき の終局伝達鉛直力(N)、 M_o :モーメントのみが伝達される ときの終局伝達モーメント(N・mm)、 M_f :算定断面でス ラブの曲げ抵抗によって伝達されるモーメント(N・ mm)、 M_s :算定断面の前後面のせん断力により伝達さ れるモーメント(N・mm)、 M_t :算定断面の両側面のね じり力により伝達されるモーメント(N・mm)、L:スパ ン(mm)、他の記号は RC 規準による。

$$M_{t}' = \tau_{tu} \cdot d^{2}/2 \cdot \{(L_{1} - d/3) + (L_{2} - d/3)\} \cdot 2$$

$$M_{s}' = \tau_{u} \cdot (c_{2} + d - L_{op}) \cdot d \cdot (c_{1} + d/2)/2$$
(8)

スラブが曲げ降伏先行型試験体の No.1~No.4 では Pmu に対する最大耐力実験値 (Qmax) の比 Qmax/Pmu は 1.0 以 上であり、梁の算定式である式(3)で安全に評価できるこ とが確認できた。ただし、今回の実験では Qmax/Pmu は 1.30~1.63 と大きく 1 を上回る傾向を示した。この原因 として、試験体の 1/3 スケールとしたことによる、スラ ブ厚さ方向のスラブ筋位置の影響が考えられる。実験上 必要なかぶり厚さを確保するためスラブ筋位置を上端 30mm、37mm とした(図-2参照)。これは試験体の スラブ厚さ 120mm に対して大きな値であり、実大ス ケールよりも相対的にスラブ筋が内側に入っていること になる。そのため、終局時に上端スラブ筋が引張応力を 受ける際、下端スラブ筋も引張応力を受け、実験値が大 きくなったと考えられる。パンチング破壊型試験体では、 最大耐力計算値と実験値の比は 1.04~1.74 であり、安全 に評価した。

3.7 復元力特性の評価

実験結果を元に復元力特性の評価を行った。

架構の初期剛性は、曲げ剛性およびせん断剛性を考慮 して求めた。スラブの有効幅は、文献のにより0.6とし た。曲げひび割れ強度は、スタラップ形式のせん断補強 筋を施した柱列帯を梁幅と考えて RC 規準により求めた。 曲げ強度を本実験ではスケールの影響により略算式が小 さめに評価する可能性があることから、ここではスラブ 全幅有効として ACI ストレスブロック法のにより求めた。 また、剛性低下率は、今回の実験より通常の梁より大き く半分程度であったことから、ここでは式(1)に示す菅 野式を 0.5 倍にして評価した。図-10 に各試験体の復元 力特性を示す。同図より本評価法によって復元力特性を 概ね評価できることが確認できたものの、隅柱の No.3 のみ降伏時変形角を大きめに評価した。危険断面位置に

図-9 開口における算定断面

図-10 復元力特性の比較

かかるコ字形補強筋が曲げ強度に寄与したものと考えら れるが、寄与率や評価方法については今後の課題である。

4. まとめ

今回の実験では、フラットプレート構造において以下 のことが確認できた。

- i. スラブの曲げ降伏先行型として計画した試験体に おいて、曲げ耐力計算値と実験値を比較すると、 両者の比は1.30~1.63であり、梁の曲げ終局モー メント略算式により安全に評価した
- ii. パンチング破壊した試験体において、パンチング 耐力計算値と実験値を比較すると、両者の比は 1.04 ~1.74であり、提案する耐力式により安全 に評価した
- iii. スラブ全幅を有効とした弾性剛性と比較して、いずれの試験体も初期剛性は小さいものであり、
 RC規準に示される全幅に対する有効幅の比である0.75倍を下回った

- iv. 有開口試験体において、加力直交方向の柱列帯ス ラブ筋と平行に配筋された開口補強筋が、柱側面 のスラブのねじれ抵抗に寄与したことから、柱側 面に位置する加力直交方向の柱列帯の開口の有無 が荷重変形関係に及ぼす影響は小さいものであっ た
- マ.スラブの復元力特性は、有効幅を文献のにより 評価し、降伏時の剛性低下率αyを低減して準用 することで、No.3を除き実験結果を概ね評価でき ることを確認した

5. あとがき

本工法は、梁型のない空間を提供できることから、 メリットも多く、適用場面は増えてくることが予想され

- る。開発を機に積極的に提案していきたい。
 - 【参考文献】
- 狩野芳一他、「フラットプレート構造の柱-スラブ 接合部に関する研究」、日本建築学会論文報告集、第 68号、昭和55年2月
- 2) 岸本 剛他、「柱とスラブからなるフラットプレート 架構の構造性能 その1」、奥村組技術研究年報、 No.32、2006.7
- 2) 岸本 剛他、「柱とスラブからなるフラットプレート 架構の構造性能 その2」、奥村組技術研究年報、 No.33、2007.7
- 4)日本建築学会、「鉄筋コンクリート構造計算基準・同 解説」、2010
- 5) 日本建築センター、「建築物の構造規定」、2015
- Fed Allen, Peter Darvall, Lateral Load Equivalent Frame, ACI Journal, Vol.74, No.7, pp.294-299, 1977
- 7) American Concrete Institute, Building Code and Commentary ACI 318-95/318/R-95, 1995

現場添加型高流動化コンクリートの拡充

-高炉セメントの利用-

Expansion of High-Superplasticized Concrete for On-Site Addition

- Usage of Portland Blast-Furnace Slag Cement -

赤星博仁* 河野政典** 伊藤 淳* 藤田基記***

要旨

近年、環境負荷低減の観点から、コンクリート工事においては、高炉セメントの利用が推進されている。そこで、既開発の「奥村式現場添加型高流動化コンクリート」の適用範囲の拡充として、高炉セメント B 種を用いた調合を加えるために、製造実験及び施工実験を行った。トラックアジテータによる製造実験では、スランプフローの保持性能、圧縮強度、及び材料分離抵抗性を確認した。施工実験においては、9m の横流しを行ったコンクリートの粗骨材の状態と圧縮強度特性を検証した。その結果、実案件の施工に必要な性能を有していることを確認した。以上のことから、現場添加型高流動化コンクリートに高炉セメント B 種を用いることが可能になった。

キーワード:コンクリート、高流動、流動化、高炉セメント、材料分離抵抗性、施工実験

1. まえがき

近年のコンクリート躯体は、形状が複雑な部材、配筋 が密な部材が増えつつあり、コンクリート工事において は、それらに対応すべく、流動性、充填性を高めたコン クリート、すなわち高流動コンクリートのニーズが高 まっている。「高流動コンクリート」については、現在、 JIS A 5308 レディーミクストコンクリート(以下、JIS コン)への追加が検討されているものの、現状では JIS 化されていない。そのため、建築工事では、スランプフ ローにより管理する大臣認定高強度コンクリートで代用 されていることが多い。しかしながら、大臣認定高強度 コンクリートを製造できる生コン工場は限定されている。 このような背景の中、全国の建設現場で高流動コンク リートが製造できる「奥村式現場添加型高流動化コンク リート」)を開発した。本高流動化コンクリートは、生 コン工場でスランプ 15~21cm の JIS コンを製造、出荷 し、建設現場で受入れた後、トラックアジテータに増粘 成分を有する高流動化剤を添加することで製造でき、高 い流動性と材料分離抵抗性を有する特長がある。本高流 動化コンクリートを製造するための条件を表-1に示す。 使用するセメントは最も汎用性の高い普通ポルトランド セメントに限定している。なお、本技術は(一財)日本 建築総合試験所から建築技術性能証明(GBRC 性能証明 第 16-16 号) を取得し、これまでに 6 案件、2000m³以 上の実績を有している。

表-1 高流動化コンクリートの製造条件	
---------------------	--

		流動化目標スランプフロー						
		450	cm	50	55cm			
調合管理的	渡 (N/mm ²)	27 ~ 33	36 ~ 45	27 ~ 33	36 ~ 45	36 ~ 45		
ベースコン	減水剤 種類 ^{*2}	AE SP	SP	AE SP	SP	SP		
の条件	スランプ (cm)	1	5	18 21				
使用材料	の条件	セメント:普通ポルトランドセメント 流動化剤・増料剤ー液タイプ						

*1 ベースコンクリート : JIS A 5308 に適合する流動化前のコンクリート *2 減水剤種類記号 : AE は AE 減水剤、SP は高性能 AE 減水剤

他方、現在、地球温暖化対策として CO₂の排出量削 減が喫緊の課題であり、その対応が全ての産業に求めら れている。多くの建設工事では、コンクリートが大量に 使用され、その主材料であるセメントの種類を使い分け ることによって、排出量を削減する対策が検討されてい る²⁾。すなわち、より CO₂の排出量が少ないセメント または混和材の使用を推進し、コンクリート工事におけ る CO₂の排出量を抑えようとするものである。特に着 目されているセメントとして、産業副産物である高炉ス ラグ微粉末を混入した高炉セメントが挙げられる³⁾。 ポルトランドセメントを製造する過程における CO₂の 排出量は 772kg-CO₂/t であるが、高炉セメント B 種は 437kg-CO₂/t であり、高炉セメント B 種を使用すること で 43.4%の CO₂排出削減効果が認められている⁴⁾。

このような社会的情勢を踏まえ、「奥村式現場添加型 高流動化コンクリート」の適用範囲を拡充すべく、高炉

*技術研究所建築研究グループ **技術研究所企画・管理グループ ***九州支店土木部

セメント B 種を用いた現場添加型高流動化コンクリー トの実用化を目指すこととした。そこで、実用化に必要 となる流動化後のフレッシュ性状の維持性能、材料分離 抵抗性、及び強度性状を確認するため、トラックアジ テータによる高流動化コンクリートの製造実験を行った。 また、高流動化コンクリートの部材への打込み施工性を 確認するため、実大部材を用いた施工実験を実施した。 本報ではこれらの開発成果について報告する。

2. トラックアジテータによる製造実験

2.1 実験概要

a. 実験計画

実用化の対象範囲は、開発済みである表-1の普通ポ ルトランドセメントを用いた場合 りと同一とした。実 験に用いたコンクリートの使用材料を表-2に、調合を 表-3に示す。流動化前のコンクリート(以下、ベース コン)の調合は、実験を行った生コン工場の標準配合 (JIS コン)を用い、AE 減水剤と高性能 AE 減水剤を用 いた調合のそれぞれ 2 調合を選定した。AE 減水剤を用 いる調合の呼び強度については、対象範囲の下限値であ る 27 と上限値である 33 とした。高性能 AE 減水剤につ いては使用頻度の高い呼び強度である 33 と対象範囲の 上限値である 45 とした。なお、実験は標準期、冬期、 夏期の3期で実施した。

流動化の方法を表-4に示す。製造方法についても、 普通ポルトランドセメントの場合と同様とし、ベースコ ンを実機ミキサで 2m³ 練混ぜ、トラックアジテータに 積載した後、現場への搬入時間を想定して練混ぜから 30分後に流動化を行った。

b. 試験項目

試験項目を表-5に、フレッシュの管理値を表-6に 示す。材料分離抵抗性を円筒貫入試験 5 及び粗骨材沈 下割合試験により評価した。既往の文献 5 により、材 料分離抵抗性を評価する試験は数例紹介されているもの の、それを正確に管理できる手法が確立されてないのが 現状である。その中で円筒貫入試験は非常に簡便に評価 できるとされる手法である。また、円筒貫入試験は円筒 貫入計に流入するモルタル量を計測する試験であるのに 対し、粗骨材沈下割合試験は骨材の分離評価に基づく手 法であるため、両者の評価対象は異なるものである。粗 骨材沈下割合試験の概要を表-7及び写真-1に示す。 粗骨材の水中重量を各部位毎に測定後、(1)式より材料 分離指数(SI)のを求めた。

$$SI = \frac{G_1 - G_2}{G_1 + G_2} \times 100 \tag{1}$$

ここに、

SI: 材料分離指数 (%)

表-2 コンクリートの使用材料				
			物性値	
セメント	(С	高炉セメントB種 密度:3.04g/cm ³	
細骨材	:	S	山砂 : 砕砂=7 : 3 密度:2.63g/cm ³ 山砂 千葉県富津産 砕砂 青森県八戸産	
粗骨材	G		砕石 2005 石灰岩砕石(八戸産) 密度:2.69g/cm ³	
化学 混和剤	Ad	AE SP VSP	AE 減水剤 高性能 AE 減水剤 増粘剤一液タイプ流動化剤	

表-3 コンクリートの調合

(a)標準	(a)標準期、冬期									
	雨アド	SL	W/C	S/A	単	位量	(kg/ı	m ³)	Ad(C	$\times \%)^{*2}$
記号	時の強度	$\rightarrow SF^{*1}$	(%)	(%)	w	С	S	G	AE	VSP
		(cm)							(SP)	
27F45AE	27	15→45	53.8	45.5	171	318	813	995	1.00	0.60
33F50AE	33	18→50	46.4	44.9	181	390	763	958	1.00	0.50
33F50SP	33	18→50	47.8	46.0	173	362	802	963	(1.00)	0.50
45F55SP	45	21→55	38.2	45.2	172	451	754	936	(0.90)	0.40
(b)夏期										
	町フィ	SL	W/C	S/A	単	位量	(kg/ı	m ³)	Ad(C	$\times \%)^{*2}$
記号	呼び 強度	\rightarrow SF ^{*1} (cm)	(%)	5/A (%)	w	С	S	G	AE (SP)	VSP
27F45AE	27	15→45	52.7	44.9	175	332	792	995	1.10	0.60

 27
 15→45
 52.7
 44.9
 175
 332
 792
 995
 1.10
 0.60

 33
 18→50
 45.5
 43.7
 186
 409
 729
 960
 1.10
 0.50

 33
 18→50
 46.9
 45.8
 173
 369
 794
 960
 (0.85)
 0.40
 33F50SP 45F55SP 45 21-35 37.6 44.9 172 458 747 936 (0.95) 0.40 *1 SL は流動化前のスランプ、SF は流動化後のスランプフロー

*2 Ad の値は、セメントに対する割合(%)

33F50AE

表-4 流動化の方法

回転速度	10 回転/分
流動化剤投入方法	半量投入→1 分撹拌→残り半量投入→2 分撹拌
積載量	2.0m ³ (10t 車)

表-5 試験項目

	試験項目と方法
基本	スランプフロー JIS A 1150
フレッシュ	空気量 JIS A 1128
性状	コンクリート温度 JIS A 1156
凝結性状	ブリーディング JIS A 1123
材料分離	円筒貫入試験による流入モルタル値の測定 ⁵⁾
抵抗性	粗骨材沈下割合試験(表-7、写真-1)
強度特性	圧縮強度 JIS A 1108 標準養生 材齢 7、28 日

表-6 フレッシュの管理値

スランプフロー	27F45AE:45±7.5cm 33F50AE:50±7.5cm 33F50SP:50±7.5cm 45F55SP:55±10cm
空気量	4.5±1.5%

G1:下部コンクリート中の粗骨材重量 (g) G2:上部コンクリート中の粗骨材重量 (g)

JASS5⁷⁾では、練混ぜから打込み終了に要する時間の 限度が120分であるため、スランプフロー、空気量、コ ンクリート温度及び材料分離抵抗性に関する試験を練混 ぜから120分まで実施した。また、ブリーディングにつ いては流動化による影響を確認するため、流動化前後に 試料を採取した。圧縮強度については流動化前後に加え、 120分経過時と流動化剤再添加時に採取した。なお、ス ランプフロー及び円筒貫入試験による流入モルタル値は、 開発済みの普通ポルトランドセメントを使用した調合の 結果¹⁾と比較して検証した。

2.2 試験結果

a. 基本フレッシュ性状

スランプフロー及び材料分離指数の時間変化を図-1 に示す。何れも流動化後のスランプフローは時間経過と 共に小さくなる傾向を示した。夏期は、標準期に比べ、 スランプフローの低下がやや大きく、27F45AEの調合 においては120分経過時に、33F50SPの調合においては 90分経過時に管理値を下回ったが、流動化剤の再添加 を行うことでフローが回復することを確認した。この結 果から、高炉セメントB種を使用したコンクリートは 普通ポルトランドセメントを使用した場合と同等のスラ ンプ保持性能を有しているといえる。なお、空気量につ いては何れの調合とも、120分経過時及び流動化剤再添 加時においても管理範囲内であった。また、図-1中の 材料分離指数の時間変化については次項で述べる。

表-8 ブリーディングの)測定結果 単位:cm³/cm
--------------	-----------------

	標準期	冬期	夏期
27E45 A E	0.12	0.13	0.09
2/F4JAE	0.14	0.10	0.09
22550 4 5	0.07	0.07	0.06
33F50AE	0.08	0.06	0.07
22550GD	0.08	0.05	0.07
33F50SP	0.07	0.04	0.07
455550D	0.04	0.01	0.05
45F55SP	0.03	0.00	0.04
1 minu -	and the second s	b.	

*上段:ベースコン、下段:流動化後

ブリーディングの測定結果を表-8に示す。流動化後 のブリーディング量はベースコンと同等であり、流動化 による影響はみられなかった。

b. 材料分離抵抗性

スランプフローと流入モルタル値の関係を図-2に示 す。スランプフローの増加に応じて流入モルタル値が大 きくなる傾向がみられた。また、普通ポルトランドセメ ントを使用した調合に比べ、流入モルタル値がやや大き くなる傾向が確認され、材料分離抵抗性が普通ポルトラ ンドセメントに比べ、小さいことが推測される。

材料分離指数の時間変化を図-1に、流入モルタル値 と材料分離指数の関係を図-3に示す。図-1に示すよ うに、標準期及び夏期において流動化直後に材料分離指 数が大きくなる傾向を示した。図-3に示す黒塗りは流 動化直後の材料分離指数である。材料分離指数が最も高 い3点は何れも流動化直後であり、他に比べて突出して いる。それを除けば、流入モルタル値が大きくなるほど 材料分離指数も大きくなる傾向を確認した。また、何れ

の調合においても、スランプフロー試験後の状態を目 視で確認したところ、骨材は均一に分布され、周辺部 にペーストや遊離水はみられなかった。

c. 圧縮強度

ベースコンと流動化コンクリートの材齢 28 日にお ける圧縮強度の比較を図-4に示す。流動化直後、 120 分経過時(流動化 90 分後)、及び再添加後の強度 は、ベースコンと同等であった。

3. 施工実験

3.1 実験概要

a. 実験計画

施工実験に用いた試験体の形状を図-5に示す。試 験体は実案件を模擬した基礎構造物とし、寸法は高さ 1m、幅 1m、長さ 10m とし、コンクリートを試験体 端部から横流しにより打込む計画とした。すなわち、 図-5に示す A 点にポンプ配管の筒先を配置し、B 点側へ横流しを行い、A 点での充填高さ 1m に達する まで継続し、A 点を打ち上げた後、筒先を反対側の B 点に移動して、同様に B 点での充填高さが 1m に達す るまで打込む計画とし、締固めを行わずにコンクリー トを充填した。流動性の評価は A 点打上げ時におけ る A 点と B 点の充填高さの差を A-B 間の距離 9m で 除して算出した流動勾配で行った。

コンクリートの使用材料を表-9に、コンクリート の調合を表-10 に示す。本実験では、現場添加型コ ンクリートに加え、今後「高流動コンクリート」が

			物性値				
セメント		С	高炉セメントB種 密度:3.02g/cm ³				
	5	51	海砂 北九州市白鳥産 密度:2.60g/cm ³				
細骨材	オ _{S2}		混合砂 海砂:砕砂=1:1 密度:2.61g/cm ³ 海砂 北九州市長間北産 砕砂 北九州市柄杓田産				
粗骨材		G	碎石 2005 北九州市柄杓田産 密度:2.70g/cm ³				
と		SP	調合 1:高性能 AE 減水剤				
识和刘	Ad	SPv	調合 2:増粘剤一液タイプ高性能 AE 減水剤				
/此个山月1		VSP	調合1:増粘剤一液タイプ流動化剤				

表-10 コンクリートの調合

≡œ	生心生	SF	11171	WC	G /A		単位	量(kg	g/m ³)		Ad	(C×⁰∕	6) ^{*2}
詞合	_{裂這} 方法	[SL] ^{*1} (cm)	呼び 強度	w/C (%)	5/A (%)	W	С	S1	S S2	G	SP	SPv	VSP
1	現場 添加	60 [21]	36	42.0	53.3	175	417	548	366	829	0.65	-	0.65
2	工場 製造	60	36	42.0	53.3	175	417	548	366	829	-	1.35	-

*1 SF はスランプフロー、[SL]はベースコンのスランプ *2 Ad の値は、セメントに対する割合(%)

三三 1	1	=++++++++++++++++++++++++++++++++++++	-
7 <u>5</u> – I		市式海火・日日	-

	試験項目と方法	管理値		
	スランプ JIS A 1101 ^{*1}	21±1.5cm		
基本フレッシュ	スランプフロー JIS A 1150	60±5cm		
性状	空気量 JIS A 1128	3.0±1.5%		
	コンクリート温度 JIS A 1156	10 ~ 35℃		
+++	円筒貫入試験(2 回平均)	-		
竹科刀栖	粗骨材沈下割合試験(表-7)	-		
抵抗性	コア断面の粗骨材面積率(表-12)	-		
流動性	コンクリートの流動勾配	-		
強度特性	圧縮強度 JIS A 1108 標準養生及びコア 材齢 28 日	呼び強度以上		

*1 調合1、2の流動化前

表-12 コア断面による面積率の算出方法

手順	試験体より採取した φ100のコアを直径方向に二等分す る。その切断面の骨材分布をトレースし、二値化処理に より、粗骨材面積率(対象範囲における粗骨材面積の比
順	より、租賃村面積率(対家範囲における租賃村面積の比率)を算出する

JIS コンに追加されることを想定し、工場の実機ミキサ で直接製造するコンクリートの2種類を用いた。表-10 の調合1は現場添加型で、ベースコンの製造には高性能 AE 減水剤を使用し、現場にて増粘剤一液タイプの流動 化剤を添加した。調合2は工場製造型で、増粘剤一液タ イプの高性能 AE 減水剤を使用した。

建築技術性能証明の適用範囲におけるスランプフロー の最大値は 55cm で、その管理幅は±10cm である。そ の上限値 55+10cm におけるコンクリートの分離抵抗性 を評価するために、本実験ではスランプフローの管理値 を 60±5cm とした。

b. 試験項目

試験項目を表-11 に示す。材料分離抵抗性を確認す るため、円筒貫入試験と粗骨材沈下割合試験に加え、採 取したコアの粗骨材面積率の算出を、表-12 に示す手 順で行った。コアの寸法は φ100 とし、コアの採取は、 打込み位置(図-5中の A 点)と水平流動距離 9m の 位置(図-5中の B 点)で行った。充填高さの測定は 水平方向に 1m 間隔で行い、A 点の充填高さが 0.5m に 達する時点と 1m に達する時点を目安に測定を行った。 なお、充填高さを測定する毎に、生コンのバッチを変更 する計画とした。

圧縮強度を把握するために、標準養生供試体に加え、 打込み位置と流動端部からコアを採取し、比較した。な お、図-5中の B 点中間部のコア採取点は A 点の充填 高さが lm に達した時点での B 点のコンクリート天端直 下の位置となるように調整した。

3.2 試験施工結果

a. 基本フレッシュ性状

フレッシュ試験結果を**表-13** に示す。いずれの調合 においても、スランプ、スランプフロー、及び空気量は 所定の管理値を満足した。

b. 流動勾配

調合ごとの充填高さを図-6に示す。A 点の充填高さ が 1m 時の流動勾配は、調合 1 では 1/16、調合 2 では 1/29 となり、調合 2 の方が勾配は緩やかで、流動性が 高い結果を示した。

なお、調合1の流動勾配は、既往の高強度系高流動コ ンクリートの流動勾配⁸とほぼ等しく、同等の流動性を 有していた。

c. 材料分離抵抗性と充填性

コア採取による調合1の粗骨材面積率の算出結果を図 -7に示す。図-5に示すA点とB点で、それぞれコ ア上部、中間部、及び下部の粗骨材面積率を算出した。 なお、粗骨材面積率の算出に用いたコアは、高さ方向 1mのコアを採取した後に、部位毎に分割したものであ る。分割したコアのうち、B点の中間部と下部は9m横 流しされたコンクリートであり、A点上部のコア、B点 中間部、及び下部は同一バッチのコンクリートと考えら れる。それらの粗骨材面積率は、流動先である B 点の 方が4%程度低下している。一方、A 点と B 点の上部は、 共に打込み元で打上げられたものであり、粗骨材面積率 に 5%程度の差がある。それを踏まえれば、流動距離 9m に達するまでに減少した粗骨材は少量であったため、 粗骨材が十分存在しているといえる。なお、調合2にお いても流動先のコアに同程度の粗骨材が分布しており、 良好な材料分離抵抗性を有していた。よって、表-13 に示す粗骨材沈下割合試験による材料分離指数が 7.0% 以下であれば、9m の横流しを行っても良好な材料分離 抵抗性を有することが確認された。一方、製造実験(図 -3)においても流入モルタル値は 40mm 以下であれば、 材料分離指数は 7.0%を超えることはなかったことから 良好な材料分離抵抗性の評価指標として、「流入モルタ ル値 40mm 以下」とすることは妥当といえる。

d. 圧縮強度

標準養生供試体及びコア採取供試体の材齢 28 日にお ける圧縮強度を表-14 に示す。いずれも管理値である 36N/mm²を満足する結果を示し、調合 1 の流動化後の 圧縮強度は、ベースコンと同等であった。

前述のように、A 点上部のコア、B 点中間部、及び下 部は同一バッチのコンクリートと考えられる。それらを 比較すると、調合1では圧縮強度、静弾性係数共に同程 度の値を示した。以上のことから、9m の横流しがコン クリートの強度特性に及ぼす影響は確認されなかった。

4. まとめ

「奥村式現場添加型高流動化コンクリート」の適用範囲を拡充すべく、高炉セメント B 種を用いた現場添加型高流動化コンクリートを対象とし、本高流動化コンク

表一13 フレッシュ試験結果					
	SF [SL] ^{*1} (cm)	空気量 (%)	CON 温度 (℃)	流入モル タル値 (mm)	材料 分離指数 <i>SI</i> (%)
管理値	60±5	3.0±1.5	10 ~ 35℃	-	-
調合 1	64.5 [21.0] ^{*2}	2.0 [2.5] ^{*2}	27 [28] ^{*2}	31	4.6
調合2	59.0	1.7	29	27	7.0

<u>- 調口 2 39.0 1.7 29 27</u> *1 SF はスランプフロー、[SL]はベースコンのスランプ

*2[]内は、ベースコンの値

図-6 A 点打込み時の充填高さ

リートの諸性状を確認するために製造実験と施工実験を 行った。

トラックアジテータによる製造実験では、スランプフ ローの保持性能等のフレッシュ性状は実用上支障なく、 圧縮強度は流動化前のコンクリートと同等であることを 確認した。

施工実験では、材料分離抵抗性と強度特性を検証し、 本高流動化コンクリートは、9m の横流しに適用できる ワーカビリティーを有することを実証した。さらに材料 分離抵抗性については、円筒貫入試験で評価できること を確認した。

以上のことから、「奥村式現場添加型高流動化コンク リート」に高炉セメント B 種を用いることが可能と なった。

5. あとがき

本高流動化コンクリートは、自己充填性を有し、締固 め作業の負担を低減でき、生産性向上を実現する材料で ある。施工実験により、高炉セメント B 種を用いたコ ンクリートにおいても所定の品質を有することを実証し た。

現在、環境配慮セメントである高炉セメント B 種を 用いた「奥村式現場添加型高流動化コンクリート」の現 場適用を進めている。今後、積極的に展開を図るべく、 データの蓄積を進める予定である。

【参考文献】

- 1) 河野政典、「現場添加型の高流動化コンクリートの実 用化1、奥村組技術研究年報、2016.10
- 2) 日本建設業連合会、「低炭素型コンクリートの普及促 進に向けて」、2016.4
- 3) 経済産業省、「地球温暖化対策計画」、p.41、 2016.5.13
- 4) 日本建築学会、「高炉セメントまたは高炉スラグ微粉 末を用いた鉄筋コンクリート造建築物の設計・施工 指針(案)・同解説」、pp.164-165、2017
- 5) 日本建築学会、「高流動コンクリートの材料・調合・製 造·施工指針(案)·同解説」、p.140、1997
- 6) 河井 徹他、「高流動域まで流動化したコンクリート に対する粘稠剤の効果について」、土木学会第 43 回 次学術講演会、pp.358-359、1988
- 7) 日本建築学会、「建築工事標準仕様書·同解説 JASS 5 鉄筋コンクリート工事 2015」、2015
- 8) 杉本 貢、「高流動コンクリートのコンシステンシー 評価試験方法(その4:型枠内の充填状況)」、日本建 築学会大会学術講演梗概集、pp.189-190、1995

*数値:粗骨材面積率(対象範囲における粗骨材面積の比率) 図-7 調合1の粗骨材面積率

衣 14 约函 20 口 00 上相 法反							
	標準養生		コア供試体				
調合	圧縮強度	중 史 上 면	圧縮強度	(N/mm^2)	静弾性係数	文(kN/mm ²)	
	(N/mm ²)	採取位直	A 点	B点	A 点	B点	
	46.2	上部	51.2	51.0	31.5	31.6	
1	$[43.5]^{*1}$	中間部	-	51.6	-	29.6	
		下部	53.4	51.4	30.9	30.0	
		上部	48.7	52.5	36.5	34.8	
2	53.0	中間部	-	58.8	-	32.5	
		下部	56.9	57.4	30.6	35.7	

表-14 材齢 28 日の圧縮強度

* 網掛けは、横流し9m地点 *1 []内は、ベースコンの値

自動倉庫ラックに適用する制振構造の開発

ー制振部材の組合せ、および地震観測結果ー

Development of Passively-Controlled Rack for the Automatic Warehouse

- Combination of Damping Devices and Results of Earthquake Observations -

小山慶樹* 舟木秀尊* 舟山勇司** 山上 聡*

要旨

自動倉庫ラックにおいて、積荷の保全と事業継続の観点から地震対策が重要視されている。既報 では、一対のラックの片側柱脚下に転がり支承と粘性ダンパーから構成される制振ユニットを設け た制振構造を開発し、積荷の配置が異なる場合でも高い制振効果が得られることを確認した。本報 では、支承材の低廉化に加え、既存ラックの柱脚にも容易に適用可能なすべり支承の開発を行った。 開発したすべり支承や転がり支承と減衰材を組合せた振動台実験を行い、既報と同程度の制振効果 が得られ、積荷の落下防止に有効であることを確認した。さらに、開発した制振構造を技術研究所 内にある自動倉庫ラックに適用し、地震観測を行っている。得られた地震観測記録に基づき、その 制振効果を確認した。

キーワード:自動倉庫ラック、制振構造、振動台実験、地震応答解析、地震観測

1. まえがき

近年、消費者のインターネット購入などの増加を受け、 大量の配送物を短期間で荷捌きするための物流施設や保 管・流通機能を備えた物流施設が増加している。また、 限られた敷地を有効活用するために、物流施設内には高 いもので30mとなる高層な自動倉庫ラック(以下、ラッ ク)が設けられ、自動搬送機により搬出入管理されてい る。**写真-1**に示すようなラックにおいて、東北地方太 平洋沖地震や熊本地震などの大きな地震により、ラック から積荷が落下・損傷し、さらには落下した積荷が自動 搬送機の走路を妨げ、物流停滞を招く事例が多発した。 今後発生が懸念される南海トラフ地震などの大きな地震 から積荷の落下を防止することは、積荷自体の保全に加 え、事業継続の観点からも重要視されている。

これに対し、著者らは積荷の落下防止策として、一対 のラックの片側柱脚下に転がり支承と粘性ダンパーを設 けた制振構造を開発し、積荷の配置が異なる場合でも高 い制振効果が得られ、積荷の落下防止に有効であること を確認している^{1)~3)}。

本報では、支承材の低廉化、および既存ラックの柱脚 にも容易に適用可能なすべり支承を開発し、開発したす べり支承や転がり支承と減衰材を組合せた制振構造の振 動台実験を行い、その制振効果を確認する。さらに、開 発した制振構造を技術研究所内にあるラックに適用し、 地震観測を行っている。得られた地震観測記録に基づき、 その制振効果を確認する。

2. 制振ラックの概要

ラックの構造モデルを図-1に示す。一対のラックは、 自動搬送機が走行するスペースを挟んで、荷物の出し入 れする方向に向かい合っている。一般的なラックは耐震 構造(非制振)であり、柱脚は床に固定されている。

*技術研究所建築研究グループ **西日本支社建築設計部

これに対し、開発した制振構造を適用したラック(以 下、制振ラック)は、頂部で連結された一対の片側柱脚 下に、積荷を出し入れする間口方向に可動する支承材と 減衰材から構成される制振ユニットを設ける。地震が発 生すると、可動側ラックの柱脚がスライドし、その水平 移動に連動して減衰材が減衰力を発揮してラックフレー ムの地震応答加速度を低減することで、積荷が落下する ことを防止する。なお、間口直交方向にはラックフレー ムのラチス材があるので、積荷は落下し難い。可動側 ラックの柱脚は、地震終了後にラックフレーム自身の水 平剛性を復元力として元の位置に復帰する。

3. 振動台実験

3.1 試験体概要

振動台実験で用いた試験体を図-2に、ラックに用い た主な部材リストを表-1に示す。試験体は荷棚5段、 奥行き2連から構成され、一般的なラックに使用されて いる部材を用いた。振動台実験の状況を写真-2に示す。 試験体は、計20個の収納棚を有しており、全ての収納 棚に735~760kgの錘(鋼板)を載せたパレットを積載し た。この試験体は、制振ユニットが機能する制振ラック の実験だけでなく、可動側ラック柱脚の支承材を固定す ることで非制振ラックの実験も可能となる。

制振ユニットのパラメータを表-2に示す。支承材に は、転がり支承(以下、RB)とすべり支承(以下、 SB)、減衰材にはオイルダンパー(以下、OD)と増幅 機構付きダンパー(以下、RDT)を用い、RB、RB+OD、 RB+SB+OD、RB+RDTの4ケースに加え、非制振ラック として、支承材を治具で固定したケースの計5ケースと した。ここで、RB は一方向のみに可動するリニアガイ ドで、摩擦係数は概ね0.0065である。また、SB はラッ クの柱脚に設けるレベル調整材の下に、すべり材、すべ り板を設けた簡易な構造であり、摩擦係数は概ね0.05で ある。SB は、既存のラック柱脚に容易に設けることが 可能であるが、間口方向に加え、間口直交方向にも可動 するため、間口方向のみに可動する RB と併用した。実 験で用いた OD、RDTの基本特性を図-3に示す。

3.2 加振ケース

入力地震動は、気象庁および防災科学技術研究所の強 震観測により得られた3波の観測波(2016年熊本地震の 益城町、2011年東北地方太平洋沖地震の白河市、1995 年兵庫県南部地震の神戸海洋気象台)に加え、1940年イ ンペリアル・バレー地震のエル・セントロにおける観測 波の4波を採用した。また、観測波のNS、EW 成分の加 速度が最大となる方向を間口方向(X軸)とした。一軸 加振(X軸)を基本とし、転がり支承やすべり支承を用 いていることから、間口直交方向の加振や鉛直方向加振 の影響を確認するため、二軸加振(XY、XZ軸)、三軸

表一1 主な部材リスト

部位	断面[mm]	材質
柱	\Box -50×50×2.3	STKR400
ラチス	φ-27.2×2.3	STK400
トップビーム	C-75×45×15×2.3	SSC400
ブレース	M16	SS400
腕木	□-50×30×2.3	STKR400

写真-2 振動台実験の状況

加振(XYZ 軸)も併せて行った。地震波の入力レベル は、間口方向の最大加速度を100cm/s²から段階的に大き くし、二軸、三軸加振する場合は観測波の比率に合わせ、 ラックフレームが弾性範囲に収まり、かつ振動台で加振 できる最大レベルを上限とした。

3.3 振動台実験結果

制振ラックと非制振ラックの振動特性を確認するため に、ランダム波(周期帯 0.02 秒~5.00 秒、最大加速度 100cm/s²)による加振を行った。加振波に対するラック 可動側の最上段(5 段目)における応答加速度のフーリ エスペクトル比を図-4に示す。1 次固有周期は、柱脚 が固定された非制振ラックでは0.40 秒であるのに対し、 片方の柱脚が水平移動する制振ラック(RB、ダンパー なし)では 0.87 秒となった。可動側の柱脚に設けた RB が滑らかに水平移動することで、ラック全体の1 次固有 周期は概ね 2.2 倍長くなった。また、減衰材を付加した 制振ラック(RB+OD、RB+SB+OD)のフーリエスペク トルを見ると、非制振ラックおよび、RB のみの 1 次固 有周期近傍の振幅を低減していることが分かる。

次に、加振波の最大入力加速度とラックの可動側5段 目フレームの最大応答加速度の関係を図-5に示す。 (a)に制振ラックと非制振ラックの比較を、(b)に一軸、 二軸、三軸加振の比較を示す。(a)より、RDTを用いた 場合を除き、制振ラックは非制振ラックに比べ、最大応 答加速度を概ね50%に低減し、積荷の荷崩れや落下の防 止策として有効であることが確認できた。RDTを用い た場合は、RDTの摺動摩擦力を超える加振ケースが少 ないことが影響し、非制振モデルに比べて最大入力加速 度が100cm/s²以上の場合で20%程度の低減に留まった。 (b)より、二軸、三軸加振しても、一軸加振と概ね同程 度の最大応答加速度となり、安定して最大応答加速度を 低減することが分かる。

また、支承材の違いの影響を比較するため、RB+OD とRB+SB+ODの場合の時刻歴波形を図-6に示す。(a) より、両モデルとも、制振ユニットの水平変位は加振終 了後、概ね元の位置に復帰していることが確認できる。 また、RBとSBを併用した場合は、RB単独の場合より 摩擦係数が大きくなるため、水平変位は僅かに小さく なった。また、可動側5段目の最大応答加速度が大きく なっているが、非制振ラックの場合と比べ、RB+OD の 場合と概ね同程度に最大応答加速度を低減し、積荷の落 下防止に有効であることが確認できる。

3.4 地震応答解析方法の妥当性

ラックや制振ユニットの仕様に応じた設計を行うこと を目的に、地震応答解析方法の妥当性を確認する。地震 応答解析に用いた解析モデルを図-7に示す。(a)に示 すように、柱脚をピン支持とした3次元立体モデルを作 成し、頂部へ強制外力を与え、腕木レベル間の層間水平 変位を求め、負担せん断力を層間水平変位で除して水平

- 73 -

(a) 3 次元立体モデル

本モデル (b)質点系モデル 図-7 解析モデル ^{支承材}

表-3 質点系モデルの諸元

	山ヶ	質	水亚圆山井	
Layer	n⊡⊂ hi [cm]	ラックフレーム <i>mf</i> [kg]	積荷+パレット <i>mp</i> [kg]	水平剛理 kf [kN/cm]
Т	—	—	—	1696.2
R	670.0	51.0	—	14.6
5	536.0	44.2	1496.4	28.4
4	416.5	61.9	1496.4	21.9
3	287.0	44.0	1506.4	39.2
2	167.5	64.6	1526.4	116.7
1	38.0	59.5	1546.4	39.7
S	0.0	69.0	_	_

剛性を算定した。図-7(b)に質点系モデルを、表-3 に質点系モデルの諸元を示す。なお、頂部に考慮した水 平剛性はトップビームの軸剛性とした。ラックフレーム の減衰は初期剛性比例型とし、1次固有円振動数に対し て等価減衰定数 h_{eq} を1.5%とし、腕木とパレットの摩擦 係数 $_{\mu}$ は 0.35⁴⁾⁻⁵⁾とした。制振ユニット部の内部粘性減 衰はないものとし、支承材の摩擦減衰、および減衰材の 粘性減衰のみを考慮した。ここで、RBと SBの摩擦係数 $_{\mu}$ は、0.0065、0.05 とした。

振動台実験結果と解析結果の時刻歴波形の比較を図-8に示す。(a)に RB+OD の場合、(b)に RB+SB+OD の 場合を示す。支承材の製造ばらつき、面圧、速度、温度、 繰返し依存性や減衰材の製造ばらつき、繰返し依存性を 考慮した解析は行っていないが、解析結果は実験結果と 良い対応を示しており、解析方法は地震時応答を概ね評 価できることを確認した。

4. 地震観測

4.1 地震観測の概要

奥村組技術研究所(茨城県つくば市)内にあるラック の一部に、開発した制振ラックを適用した。制振ラック の適用効果を確認するため、2017年4月から地震観測を 行っている。

ラック配置図と観測点を図-9に、制振ユニットの配 置図を図-10に示す。ラックの総高さは約7.3mあり、 自動搬送機1台あたり2列×14~15連×5段の積荷が収容

できる。観測点は、制振ラックの制振効果や積荷の配置 状況の違いによる捩れ振動の影響を確認するため、床面、 制振ラックの西側1段目、5段目、東側5段目、耐震ラッ クの西側5段目の計5ヵ所とした。ラックの間口方向を Y方向とし、個々の観測点において水平2方向、鉛直1 方向の加速度を観測した。なお、床面で震度1以上(計 測震度0.5以上)の地震を対象に収録し、サンプリング 間隔を0.01秒とした。制振ユニットは、RB×30基、 OD×8 基に加え、回転式粘性ダンパー(以下、RD)× 14 基を設けている。図-11に制振ユニットで用いたダ ンパー1基あたりの減衰性能(基準特性)を示す。

4.2 地震観測結果

2018年1月までの10ヵ月間で記録した観測回数は計52 回となり、計測震度4の地震を2回観測することができ た。なお、ダンパー種別による減衰効果の違いを確認す るため、RD、OD 両ダンパーを取付けた場合を約4ヵ月 間、ODのみを取付けた場合を約1ヵ月間、両ダンパーを 取り外した場合を約5ヵ月間観測した。全観測記録を対 象とし、床面の最大加速度に対する5段目の最大応答加 速度倍率(Y方向)を図-12に示す。非制振ラックの5 段目最大応答加速度は、観測波によりばらつきがあるが、 平均すると3.2 倍程度に増幅していた。これに対し、制 振ラックは2.1 倍程度となり、非制振ラックに比べ最大 応答加速度を65%程度に低減していることが分かる。制 振ラックの最大応答加速度倍率の平均値は、RB のみの 場合で1.8倍、RB+OD の場合で3.1倍、RB+OD+RD の場 合で 2.3 倍となり、RB のみの場合が最も小さい結果と なった。この原因としては、制振ラックが極めて稀に生

じる地震動に対して、自動搬送機との水平クリアランス を確保するために、制振ユニットの最大水平変位が ±10cm以下となるようなダンパー量を設けたため、入力 レベルに対してダンパーの減衰力が過度に働いたことな どが挙げられる。

計測震度4を記録した地震における制振ラック (RB+OD+RD)と非制振ラックの間口方向(Y方向) 応答の比較を図-13に示す。なお、ラック振動系の主

要動の範囲である、0.1Hzから20Hzに着目するためにバ ンドパスフィルター処理を施している。図-13(a)、 (b)より床面で記録した最大加速度149.8cm/s²に対して、 非制振ラック 5 段目の最大応答加速度は233.6cm/s²、制 振ラック5段目では183.6 cm/s²となった。非制振ラック と制振ラックでは、積荷の重量や配置条件が異なるが、 5 段目の最大応答加速度を比較すると、制振ラックを導 入することで、概ね80%に低減していることが分かる。 なお、このときのラックの1次固有周期は、倉庫床に対 する5段目の応答加速度のフーリエスペクトル比から、 非制振ラックで0.16秒程度、制振ラックで0.29秒程度で あった。図-13(c)より、制振ラック5段目のフーリエ振 幅は、制振ラックの1次固有周期より短周期領域におい て非制振ラックよりも小さくなり、短周期側の加速度応 答に対して加速度応答の低減効果があることが確認でき た。引き続き地震観測を行い、制振効果を確認していき たい。

5. まとめ

間口方向を対象に制振構造となる制振ラックについて、 支承材の低廉化に加え、既存ラックにも容易に適用でき るすべり支承を開発した。支承材や減衰材の組合せをパ ラメータとして、その適用効果を振動台実験により確認 し、得られた実験結果と地震応答解析結果を比較した。

また、制振ラックを実適用して地震観測を行い、適用 効果を確認した。主な結論を以下に示す。

- i.振動台実験より、転がり支承と開発した簡易なすべり支承を併用した場合でも、転がり支承のみの場合と同等の制振効果があり、非制振に比べ最上段の最大応答加速度を概ね50%に低減し、積荷の荷崩れや落下の防止策として有効である
- ii. 地震終了後に制振ユニットの水平変位は概ね元の 位置に復元し、残留変位が生じ難いことを確認した
- 11. 地震応答解析の結果は振動台実験結果とよい対応を示しており、制振ユニットの支承材、減衰材やラックの仕様に応じた制振ラックの設計に適用できる
- iv. 地震観測記録より、積荷の重量や配置条件が異なるものの、震度4程度の地震において、非制振 ラックに比べ制振ラックは、制振ラックの一次 固有周期以下の短周期領域で応答加速度を低減した
- v. 震度 4 以下程度の地震に対して、制振ラックは ラック最上段の最大応答加速度を、非制振ラッ クに比べ概ね 65%に低減した

【謝辞】

本研究では、防災科学技術研究所が提供する強震観測 網 K-NET の地震動データ、および国土交通省(気象庁)が 提供する強震観測データを使用させて頂いた。ここに記 して感謝の意を表す。

【参考文献】

- 舟木秀尊他、「片側の柱脚が滑動する立体自動倉庫 ラックの制振効果に関する研究」、日本建築学会構造 工学論文集 Vol.64B、pp.287-294、2018.3
- 舟木秀尊、舟山勇司、小山慶樹、「立体自動倉庫に適 用する制振技術の開発」、奥村組技術研究年報、 2016.9
- 小山慶樹、舟木秀尊、舟山勇司、「自動倉庫ラックの 制振構造に関する研究(その1)、(その2)」、日本建 築学会大会学術講演梗概集、構造II、pp.275-278、 2016.8
- 4) 舟木秀尊、小山慶樹、舟山勇司、澤田 毅、隈澤文 俊、「立体自動倉庫ラックに適用する積載物の落下防 止を目的とした免震装置の開発」、日本建築学会技術 報告集、pp.47-52、2018.2
- 5) 舟木秀尊他、小山慶樹、舟山 勇、「自動倉庫ラック のパレット免震装置に関する研究(その1)、(その 2)」、日本建築学会大会学術講演梗概集、構造Ⅱ、 pp.841-844、2017.8

竣工後 30 年を経過した免震建物に使用されている 免震装置の性能検証

Performance Verification of Seismic Isolation Devices

Used in a Base-Isolated Building for 30 Years

山上 聡* 上 寛樹* 舟木秀尊* 小山慶樹*

要 旨

竣工後30年を経過した免震建物に使用してきた積層ゴムとダンパーを建物から抜き取り、単体での基本特性を確認するとともに、限界性能や残存性能について調査した。その結果、30年使用した 天然ゴム系積層ゴムの水平剛性は、経年による硬化を除き、面圧の違い等による影響はほとんど見 られなかった。また、限界性能試験から、水平方向の変形性能は納品時と同等以上を確保しており、 30年を超える実使用を経ても十分な変形能力を有していることが確認できた。鋼棒製ダンパーは、 ±5cmの繰返し載荷においてこれまで経験した地震等による疲労の影響が見られたものの安定した 履歴を有し、十分なエネルギー吸収能力を有していた。

これまで行った建物全体での評価にあわせ、積層ゴムとダンパーの単体試験結果からも、竣工後 30年を経過した免震装置が必要な変形能力とエネルギー吸収能力を有していることを確認した。

キーワード: 天然ゴム系積層ゴム、鋼棒製ダンパー、経年変化

1. まえがき

免震建物の主要構造部材である積層ゴムは、建物に適 用され始めてから 30 年程度経っているが、その経年変 化に関する実データはなく、熱老化促進試験等による予 測値に依存している。そのため、積層ゴムの信頼性確保 には、経年変化の長期的な追跡調査と実証データの蓄積 が必要である。そこで、本研究では、天然ゴム系積層ゴ ム(以下、NRB)の経年変化を確かめるために、約 30 年前に竣工した免震建物を対象に、剛性、減衰、クリー プ等について、建物を実測し調査している^{1)、2)}。これ まで、建物の自由振動実験から評価した積層ゴムの水平 剛性は竣工時に比べ 30 年目では 9%大きくなっており、 これは設計時の予測の範囲内であることを報告した³⁾。

しかし、当建物での加力実験の水平変形は 10cm (当 建物で使用している積層ゴムのゴム総厚に対するせん断 変形率 y で約 100%)までである。そこで本報では、 10cm 以上の変形領域において免震装置単体の 30 年後の 性能を確認し、実建物での試験条件との整合性を確認す るために、建物から積層ゴムとダンパーを抜き取り、そ れぞれ単独で加力試験を行い、基本性能、限界性能およ び残存性能について調査した結果を報告する。

写真-1 対象建物

表-1 建物概要

I	頁 目	諸	元		
評定者	番号・竣工	BCJ-免2・19	86 年竣工		
*	畫 诰	鉄筋コンクリート造4階			
	丹 坦	基礎免	基礎免震		
Ē	高 さ	15.5m			
建	築面積	348.18m ²			
延	べ床面積	1,330.1m ²			
車	轩 高	13.75m			
免震	積層ゴム	天然ゴム系積層ゴム	φ 500mm×25 基		
装置	ダンパー	鋼棒製ダンパー	φ50mm×12 基		

2. 対象建物および免震装置

対象となる免震建物は、つくば市内に建設された奥村 組技術研究所の管理棟であり、1986年9月に竣工してい る。対象建物を写真-1に示す。免震装置には、NRB を25基、鋼棒製ダンパーを12基使用している。建物概 要を表-1、免震装置概要を図-1、免震装置の諸元を 表-2、免震装置の配置を図-2に示す。

NRBのゴム径はφ500mm、ゴム層は7mm×14層(ゴム総厚=98mm)、鉛直・曲げ剛性の指標となる1次形状係数は17.1、座屈荷重や水平剛性の指標となる2次形状係数は5.1である。ゴムのせん断弾性率Gは0.44N/mm²

表-2 免震装置の諸元

天然ゴム系積層ゴム				
	硬さ (JIS A) 25%応力		40±3	
ゴム特性			$0.265\pm0.098~{ m N/mm^2}$	
(SI 単位換算)	伸び		600%以上	
	引張強さ		15.7 N/mm ² 以上	
	4	マ体ゴム	φ 500 t=7mm 14 層	
形状	形状	1次S1	17.1	
	係数	2次 S2	5.1	

鋼棒製ダンパー				
	材質	S20C (JIS051)		
鋼棒	玉中	ループ状鋼棒φ50		
	7247	(ループ内径 φ 500、4 本)		

写真-2 積層ゴムの抜取状況

相当で、建設時の納品検査において最大変位 250mm の 水平変形試験を全数実施している。

ダンパーは鋼棒製で、内径 φ 500mm のループ状の鋼 棒4本で1基のダンパーが構成されている。なお、鋼棒 の直径は φ 50mm、材質は S20C である。

3. 積層ゴムの性能確認

3.1 試験概要

積層ゴムを建物から抜き取り、圧縮せん断試験機にて 水平剛性に関する各種依存性(基本性能)と、限界変形 性能を調査する。抜取状況を写真-2に示す。基本性能 の確認は、建設時の納品検査を行った試験機1(鉛直 5MN、水平 2MN)で行う。限界変形性能の確認は、試 験機1では載荷能力が不足するため、載荷能力の大きい 試験機2(鉛直 25MN、水平 6MN)で行った。

表-3 試験機1での試験パラメータと剛性

			-		
ケース	面圧 [N/mm ²]	変形率	保護ゴム	加力	剛性* [kN/mm]
		γ[/v]	1	771-1	[]
1	4.5	100 有 土		1.03	
2			有	, IL ST	1.02
3	6.0	200		南 北	0.92
4	6.0		áur.		0.89
5				東西	0.90

*剛性は試験結果の水平剛性を示す

a. 試験機概要と試験方法

試験機1の概要を図-3に示す。積層ゴムを2基用い る試験機である。そのため、対象建物から納品検査時と 同じ組み合わせとなる2基の積層ゴムを抜き取り(以下、 抜取品)試験対象とし、試験結果は2基の平均値として 評価する。

試験パラメータを表-3に示す。パラメータは、①面 圧(鉛直荷重をゴム断面積で除した鉛直方向の平均応力 度)、②変形率、③積層ゴムの外周をカバーしている保 護ゴムの有無、および④加力方向とした。ケース1は建 物内での設置状態を模擬した条件、ケース4は納品検査 時の条件である。納品検査時には、保護ゴムを巻いてお らず、面圧は 6.0N/mm² とし、水平変形はゴム総厚に対 するせん断変形率 $\gamma = 200\%$ (約 200mm)まで与えた。

ー方、建物内での設置状態においては保護ゴムを巻い ており、使用面圧は 4.5~5.0N/mm² 程度と考えられる。 また、当建物は、これまで経験した地震時の揺れに加え 南北方向にのみ水平変形を与えた加力実験や自由振動実 験(γ=100%以内)を行ってきた。そこで、ケース1~ 4 では加力方向を建物に設置されていた状態での南北方 向とし、ケース5では、繰り返し行った実験の影響を確 認するために加力方向を東西方向とした。

表-3には併せて各ケースの実験結果の水平剛性を示 している。試験は各ケース3サイクルずつ載荷を行い、 水平剛性は履歴の安定する3サイクル目の $\gamma = \pm 100\%$ 時の割線剛性で評価⁴した。

b. 積層ゴムの納品検査時の性能

納品検査時の水平剛性は、 $\gamma = 100 \sim 150\%間の接線剛$ 性で評価しており、その全数の平均値mは0.80kN/mm、 標準偏差 σ は 0.024kN/mm、変動係数 V (= σ /m×100) は 2.9%であった。個々の水平剛性の平均値に対する最 大および最小値の比率は+4.0%、-4.4%であり、その 中で抜取品の水平剛性は 0.81kN/mm (+1.6%) と平均 値に近いものであった。

c. 基本性能確認試験結果

(a) 面圧の影響

面圧の影響を調べるためにケース1と2の荷重変形関 係の比較を図-4に示す。試験は建物での設置状態に合 わせて保護ゴムのある状態とした。水平剛性は、ケース 2 (面圧 6.0kN/mm²) では 1.02kN/mm に対し、ケース 1

(面圧 4.5kN/mm²) では 1.03kN/mm と 1%程度の上昇で あり、面圧の違いによる水平剛性の違いはほとんど見ら れなかった。

(b) 経験したせん断変形率の影響

積層ゴムの水平剛性は、経験したせん断変形率に影響 することが知られている。そこで、経験したせん断変形 率の影響を調べるためにケース2と3の荷重変形関係の 比較を図-5に示す。水平剛性を比較すると、γ=

面圧	せん断変形率	せん断変位	速度	繰
[N/mm ²]	γ [%]	[mm]	[mm/s]	返
	± 100	\pm 98		
	±153	± 150	5	2
	± 200	±196	5	3
6	± 250	±245		
	± 300	± 294		
	± 350	± 343	3	1
	± 400	± 392		

100%までのケース2では1.02kN/mmに対し、 $\gamma = 200\%$ まで変形したケース3では0.92kN/mmと約11%程度低下していたが、設計では $\gamma = 200\%$ における3サイクル目の安定した値を用いている。

(c) 保護ゴムの影響

保護ゴムの影響を調べるためにケース3と4の荷重変 形関係の比較を図-6に示す。水平剛性を比較すると、 ケース3(保護ゴム有)の場合、1 サイクル目は 1.01 kN/mm、3 サイクル目は 0.92kN/mm であった。ケース4

(保護ゴム無)の場合、1 サイクル目は 0.94kN/mm、3 サイクル目は 0.89kN/mm であった。保護ゴムの影響は、 1 サイクル目では約 7%程度あったが、3 サイクル目で約 3%程度となった。これは、1 サイクル目で保護ゴムが緩 んだためであり、その後の影響は小さい。設計では大地 震時には緩むことを想定している。

(d) 加力実験の影響

これまで 30 年間、建物の静的加力実験や自由振動実 験(2016年は10cmを約30回)は南北方向のみに行っ てきた。そのため、地震時(30年間で震度5以上は5回 程度、最大変形約8cm)のランダムな方向への変形とは 別に、南北方向は東西方向に比べ特定の繰り返し変形を 多く受けている。その影響を把握するために、加力方向 の違うケース4と5の荷重変形関係の比較を図-7に示 す。ケース4(南北方向)の水平剛性は0.89kN/mmに対 し、ケース5(東西方向)は0.90kN/mmと約1%程度の 違いであり、加力実験等による繰り返し変形の影響はほ とんど見られなかった。

写真-3 せん断変形率 γ=±300%加力時の積層ゴム

3.3 限界変形性能確認試験

a. 試験機の概要と試験方法

試験機2の概略図を図-8に示す。水平方向には2基、 鉛直方向には4基のアクチュエータを有しており、荷重 は各方向のロードセルの合計値、変位は各方向の変位計 の平均値を用いる。積層ゴムに取り付けられている既設 のフランジプレートは、建物での使用状態以上の加力を 行う限界変形性能を確認するには剛性が低いため、剛性 の高い試験用フランジに交換した。加力方向は、建物に 設置されていた時の南北方向とする。この時、NRB の 上フランジが建物南側に相対変形する方向を荷重・変位 の正側とする。実験パラメータを**表**-4に示す。鉛直荷 重は建物の設計荷重 1176kN に相当する面圧 6.0N/mm²、 水平加力はゴム総厚に対するせん断変形率 $\gamma = \pm 100\%$ ~±400%の変位を与える。

b. 限界変形性能確認試験結果

試験中の積層ゴムの外観を写真-3と写真-4に、水 平荷重-水平変位関係を図-9に示す。試験時の気温は 15~16℃である。 $\gamma = \pm 300\%$ までは、ゴムに異常は認 められなかった。 $\gamma = \pm 350\%$ 加力時に最下層で加力方 向に対し 45°方向の付近に亀裂は発生したものの、水 平荷重は増加を継続し履歴曲線に異常は見られなかった。 また、試験機の軸力は安定して作用していることから、 この時点においても軸力保持能力は維持されていた。 γ =±400%加力でも同様の傾向が継続されていたが、亀 裂がさらに進展したことから、この時点を終局と判断し 試験を中止した。なお、亀裂は写真-4に示した対面側 にも同様に発生しており、そこから外周方向に沿って進 展していた。また最上層の加力直交位置付近にも軽微な 亀裂が発生していた。

過去に実施された破断試験⁵⁰において、型式と面圧が 同じ試験体から得られている荷重変形関係と今回の $\gamma =$ 400%載荷時の比較を図-10に示す。今回の試験結果で は製造時と同等の $\gamma = 370\%$ という変形能力を維持して いることが明らかとなった。ただし、300%以降の急激 な剛性増大については、詳細な検証が必要である。

3.4 建物での静的加力実験との比較

建物の上部構造を片押しして免震層を南北方向に変形 させた静的加力で得られた荷重変形関係と、抜取品の荷 重変形関係を用い、両者における水平剛性とその経年変 化を比較する。この時、建物の静的加力で得られた結果 は積層ゴム 25 基の平均値(以下、建物平均)とする。

まず、建物静的加力実験で得られた荷重変形関係と、 加力条件の近いケース2の荷重変形関係を比較した結果 を図-11 に示す。抜取品の荷重変形関係の平均は建物 平均とよく一致しており、抜取品が建物の平均的な荷重 変形関係を示していることを確認した。

次に、2016年の建物平均と、ケース4(納品検査時の 試験条件)を比較した結果を図-12に示す。建物での 荷重変形関係の平均は1サイクル目であり、抜取品の試 験機による試験結果の1サイクル目と建物の平均を比較 するとよく一致している。

最後に、抜取品の納品時と経年時の1サイクル目の割 線剛性を算定し、建物平均と比較したものを図-13 に 示す。抜き取った NRB の水平剛性については、納品時、

図-13 水平剛性の比較

経年時とも建物全体と単体での静的加力試験の結果が良い一致を示したことから、両試験の整合性が確認できた。

4. 鋼棒製ダンパーの性能確認

4.1 鋼棒製ダンパーの試験概要

実建物で 30 年間使われた鋼棒製ダンパーは、これまで多くの地震や加力実験を経験してきた。これまで経験した変形は、加力実験や自由振動実験の 10cm が最大で、 地震時では3cm程度が数回で最大で8cm程度であった。 そこで、鋼棒製ダンパーの荷重変形関係や疲労破壊に対 する残存性能を確認するために、静的加力と繰返し加力

図-14 鋼棒製ダンパーの試験機の概要

(b)繰り返し加力 写真-5 加力実験の状況

の実験を行った。試験体は、建設当時から交換用とし て保存されていた鋼棒製ダンパー1 基 (No.0、以下、交 換用という)と対象建物の免震層から抜き取った 12 基 (No.1~No.12、以下、抜取品) である。

試験装置を図-14 に、試験状況を写真-5に示す。 静的加力実験は、No.0~No.12 の全数(4 ループで1 組 の試験体)を対象とし、振幅±10、20、50、100、 150mm を各1回の漸増加力により実施した。繰り返し 加力は、静的加力実験で使用した 13 組の試験体のうち 交換用1組と抜取品の代表1組からループ形状が整形な 1ループを各2体ずつ取り出して実施した。2組の試験

図-16 鋼棒製ダンパーの荷重変形関係(繰返し加力)

a) 抜取品±50mm 加力時

150

100 200

b) 抜取品±200mm 加力時

200

図-17 鋼棒製ダンパー破断までの繰返し回数

写真-6 破断後の鋼棒製ダンパーと破断位置(○)

体から取出した 1 体のループについては、振幅を±5cm (加力周波数 0.05Hz)、もう 1 体のループは、±20cm (加力周波数 0.01Hz) に固定し、鋼棒製ダンパーが破 断するまでの加力回数を求めた。

4.2 鋼棒製ダンパーの試験結果

静的加力試験の結果を図-15 に示す。図は交換用 (No.0) と抜取品(No.1~12)全数の荷重変形関係を重 ね合わせて示してある。実際の免震建物に使用してきた 鋼棒製ダンパーに、経年による剛性低下は見られず、交 換用と変わらない荷重変形関係を確認できた。

交換用の No.0 と、抜取品の中で平均的な履歴であった No.7 を対象に 2 ループずつ取り出し、破断するまで繰り返し加力を行った。繰り返し加力の荷重変形関係を 図-16 に、振幅と破断までの繰り返し回数を図-17 に、 破断位置を写真-6に示す。破断までの繰り返し回数は、 振幅±5cm では交換用の 1273 回に対し、抜取品が 761 回であったが、振幅±20cm においてはどちらも 100 回 程度であった。一方、破断位置は振幅によって異なり、 ±5cm ではボルトで固定する付け根付近で、±20cm で はループの中間部で最外端となる部分で破断した。

抜取品の鋼棒製ダンパーは、これまで 10cm 以下の領 域にて繰り返し変形をしており、その影響で±5cm の繰 り返しでは抜取品は交換用よりも早く疲労破断したと考 えられる。一方、±20cm では疲労の影響は少なく、破 断までの繰返し回数は同程度であった。これらのことか ら、これまで経験した中小地震や行ってきた実験が小振 幅での疲労損傷に影響を及ぼしているものの、大地震時 に対するエネルギー吸収能力は十分残存していると考え られる。変形量によって破断位置が異なる点については、 今後 FEM 解析等を用いて検証していく予定である。

5. まとめ

竣工後、約 30 年経過した免震建物から抜き取った NRB と鋼棒製ダンパーについて、次のことを確認できた。

NRBについて

- i. 水平剛性における面圧の違いの影響は 1%程度と 小さかった
- ii. 保護ゴムの影響は3%程度と小さかった
- iii. せん断変形率 200%を与えた水平剛性は1 サイク ル目に対し3 サイクル目では6%程度低下したが 想定の範囲内であった
- iv. 建物での特定方向への加力実験による影響は見ら れなかった
- v. 30 年経過した NRB は水平剛性については建物での試験と同様に健全性を維持しており、限界変位については経年の影響は見られず納品時と同等の γ=370%以上の変形性能が確認された

vi. 建物での加力試験と積層ゴム単体試験の結果は良い一致を示し、両試験の整合性が確認できた

鋼棒製ダンパーについて

- ii. 繰返し加力実験では、小振幅においてこれまでの 実験等による疲労の影響が見られたが、大振幅に おいては交換用と変わらない残存性能を確認でき た

これらのことから、積層ゴムと鋼棒製ダンパーの単体 試験の結果によっても、竣工後 30 年を経過した免震建 物は必要な安全性と耐久性を有していることを確認した。

6. あとがき

本研究は、30年前に日本で最初に実用化された免震 建物を対象として実施している免震装置の経年変化に関 する追跡調査の一環であり、これまでの検討で当初の設 計条件の妥当性と 30年間使用してきた免震装置の健全 性を確認できた。今後は、積層ゴムの別置き試験体や材 料の特性変化等について、引き続き検討を進める予定で ある。

本研究の遂行に当たり、共同研究者である福岡大学の 高山峯夫教授と昭和電線ケーブルシステム社のご助力を いただいた。ここに記して謝意を表す。

【参考文献】

- 安井健治、早川邦夫、山上 聡、「免震建物に設置された積層ゴムの経年変化」、日本建築学会技術報告集、 第24号、pp.167-170、2006.12
- 2)山上 聡、舟木秀尊、安井健治、小山慶樹、三須基 規、髙山峯夫、「竣工後 30 年経過した免震建物に設 置された天然ゴム系積層ゴムの経年変化」、日本建築 学会大会学術講演梗概集、pp.937-938、2017.8
- 山上 聡、舟木秀尊、安井健治、小山慶樹、「実免震 建物における免震装置の水平剛性の評価」、奥村組技 術研究年報、No.43、2017.9
- 4) 日本免震構造協会、「設計者のための建築免震用積層 ゴム支承ハンドブック(第2版)」、p.83、2017
- 5) 日本建築学会、「免震構造設計指針(第1版)」、p.46、 1989

五重塔の振動特性の評価

Evaluating the Vibration Characteristics of a Five-Storied Pagoda

平野 晋* 山上 聡** 中嶋邦彦*** 吉田峰敏***

要旨

伝統木造建築物である五重塔は、一般的に耐震性に優れていると言われている。これまでに被災 記録の調査や微動観測などによる研究事例はあるが、実建物の地震観測データに基づき、その振動 特性を定量的に検証した研究はほとんどない。

そこで、五重塔の耐震性の把握を目的として、静岡県富士宮市の大石寺五重塔の常時微動観測、 自由振動実験、地震観測を行った。また、実験および観測から得られた振動特性に基づいて、せん 断型質点系の解析モデルを作成し、地震時の五重塔建物応答の、シミュレーションの適用性につい て検討した。

本報告では、地震観測による五重塔の動的な特性を報告するとともに、地震時の建物応答のシ ミュレーション解析を実施し、モデル化の適用性、および今後の課題について報告する。

キーワード:重要文化財建造物、五重塔、地震観測、地震応答解析、シミュレーション

1. まえがき

伝統木造建築物である五重塔は、一般に耐震性に優れ ていると言われており、大地震時に五重塔が倒壊したと いう歴史的な記録は現存しない1)。しかし、地震時の五 重塔の観測記録に基づいた、振動特性の定量的な研究は あまりない。

静岡県富士宮市の大石寺五重塔(写真-1)は、江戸 時代以前に建てられ現存する22塔のうちの1塔である。

建設時期と歴史地震の発生時期から、これまで、1854 年の安政東海地震や、1944 年の東南海地震など、富士 宮市で震度5以上と想定される地震を複数経験している はずだが、倒壊などの記録はない。これまで常時微動観 測や、自由振動試験も行われておらず、地震時の観測も されていなかった。

この五重塔は、東海地方唯一の五重塔であり、駿河ト ラフ、南海トラフを震源とする巨大地震発生時には強震 域となる可能性がある地域である。

既往の研究では、五重塔の歴史地震による被災記録の 調査報告 1) や、重要文化財五重塔 14 塔で常時微動観測、 自由振動試験の報告 2)~15) がある。観測結果より、五重 塔の固有振動数は高さに反比例すること、固有振動数や 減衰定数などが報告されている。

今回、五重塔の耐震性の把握のため、地震計を設置し て、常時微動観測、自由振動、地震観測を行った。また、 地震時の応答特性を明らかにするために、せん断型質点 系の解析モデルを作成し、地震時の建物応答シミュレー

ションを試みた。解析結果と観測値を比較し、モデル化 の妥当性、および適用性を確認した。

2. 建物概要

大石寺五重塔は、1749 年 6 月建立、様式は和様、三

写真-1 大石寺五重塔

*東日本支社建築設計部 **技術研究所建築研究グループ ***東日本支社建築部

図-1 西立面図、平面図

表-1 柱部材の断面諸元

部位	寸法	形状	その他
心柱	八角形部:575mm~340mm 円形部:340mm~180mm	内部は八角形 相輪部は円形	5本継ぎ:金輪継ぎ 最上部はヒノキ それ以外はケヤキ
四天柱	470mm~360mm	八角形	ケヤキ
側柱	440mm~380mm	外面部分は円形 内部は八角形	ケヤキ

間、五重、銅板葺き形式である。1966年に国重要文化 財建造物に指定されている。塔の高さは、地面から五層 の屋根上部まで28.8m、相輪の宝珠の最上部まで約 34.3m(図-1)、心柱は礎石式(礎石の上に心柱が 載っている形式)である。軸組構法は長柱構法と櫓構法 の併用構法(四天柱、側柱とも柱盤の上に載っている) である。

図-1、2に示すように、五重塔の柱は、建物中心部 を地盤面から最上部の屋根を突き抜けて、「相輪」と呼 ばれる金属製の装飾物を支える「心柱」、心柱の回りの 4本の「四天柱」、五重塔の室内外を区切る12本の「側 柱」の3種類から構成されている。最も高さが低い屋根 を「初重」、その直上の屋根を「二重」、最上部の屋根は 「五重」と呼ばれている。心柱以外の柱と、各重屋根で 構成される構造物を「塔身」と呼ぶ。また、各重と横架 材とその直下の塔身の柱で構成される門型の架構をここ では「層」と称する。心柱以外の各層の柱は、通し柱で はなく、柱脚部は「柱盤」、柱頭部は「台輪」という横 架材で接続されている。

心柱は、最下端は前述のように地盤上の「礎石」に 載っており、途中では塔身と接続されておらず、五重の 最上部で木製のくさびを介して塔身と接続されている¹⁰。 心柱、側柱、四天柱の断面諸元を**表-1**に示す。

図-2 北断面図と地震計設置箇所と名称

表-2 地震計の仕様

	仕様			
センサー	サーボ型加速度計			
	AS-303D3W2: (東京測振)			
	分解能: 5/1000cm/s ²			
	計測範囲: $0\sim\pm3000$ cm/s ²			
収録装置	ネットワーク対応計測震度計			
	SAMTAC-20-27ch: (東京測振)			

3. 観測概要

3.1 地震計の設置位置

地震計は NS、EW、UD の三成分の計測が可能で、塔 身の五次モードまで・心柱の三次振動モードまでを把握 出来るように、地盤面、各重の柱盤上(5箇所)、心柱 (3箇所)の計9箇所に設置した(図-2)。

3.2 観測方法

地震計は表-2に示すように、微動観測にも対応でき るものである。

観測は、常時とトリガーの2種類である。常時観測は、

常時微動および日常的なモニタリングを目的としてサン プリング100Hz、30分ごとにファイルを作成する。トリ ガー計測では、地盤加速度が1cm/s²以上で記録を開始す るように設定した。記録時間は可変長であり、地盤加速 度が 30 秒間、1cm/s²以下で記録を終わらせ、最大記録 時間は300秒である。トリガー計測時、トリガー感知前 の記録時間は20秒とした。

4. 常時微動観測

4.1 固有振動数

2018年4月1日3時30分からの30分間の常時微動記 録の観測データを用いて固有振動数を求めた。図-3に 30分間の加速度波形を示す。NS、EW 各方向とも、塔 身部の応答は0.07~0.15cm/s²、心柱は0.74~1.36cm/s²で あり、心柱の応答は塔身に比べ大きかった。各方向の フーリエスペクトルを図-4に示す。塔身を青線で、心 柱を赤線で、いずれも最上部を太線で、それ以外を細線 で示す。図-4のフーリエスペクトルから各モードと想 定されるモード図を図-5に示す。各モードに対応した 固有振動数を表-3にまとめて示す。

一次、二次、三次の NS 方向の、塔身の固有振動数は、
 0.88Hz、2.30Hz、3.97Hz、心柱は、1.13Hz、1.89Hz、
 3.64Hz だった。

建物形状は正方形で、構造架構は、心柱を中心とした 点対称であるが、NS 方向と EW 方向で固有振動数が若 干違っていた。構成する部材寸法差などの違いが影響し ていると考えられる。また、微動観測記録を用いた RD 法による塔身の減衰評価は、NS、EW 両方向とも、 h=0.02 前後であった。

図-4 常時微動観測結果 フーリエスペクトル

次数

5. 人力加振実験による減衰定数の推定

人力加振実験により減衰定数を推定した。加振振動数 は事前の微動観測で一次固有振動数と推定した 0.88Hz とした。

四重の柱頭部の横架材に1人が立ち、人体の体重移動 による慣性力を利用して加振した。一定の振幅が確認さ れた後に、加振を停止し、その後の応答波形から指数曲 線の近似により、減衰定数を算出した。

人力加振実験における、NS 方向加振時の応答波形を 図-6(a)に、EW 方向加振時の応答波形を図-6(b)に 示す。自由振動の開始時刻を図中の破線で示した。

NS、EW両方向ともに、加振直交方向が、加振方向の 半分程度の加速度レベルで応答していた。加振方向の振 動が収まっても、直交方向の振動は比較的長く継続して いた。既往の研究事例^{1)、2)}でも、同様の結果であった。 減衰定数は NS 方向、0.036、EW 方向 0.048 となった。 減衰定数の算出において、加振方向の自由振動波形から 対数減衰率により減衰定数を評価したが、直交方向も振 動していることについては、今後、検討の余地があると 思われる。

なお、自由振動時における塔身の固有振動数は、NS 方向 0.82Hz、EW 方向 0.84Hz となった。

6. 地震観測記録

2018年6月9日22時50分、静岡県東部を震源とする M3.6 の地震が発生した。震央距離は 6km、震源深さ 17km と直下型の地震であった。観測した加速度波形を 図-7に示す。地盤の加速度記録から計測震度は 1.6 で あった。地盤の加速度の最大値は NS 方向で 16 cm/s² で あったが、塔身の加速度は 6~10cm/s²、心柱の加速度は 38~49cm/s² で、塔身の応答は入力加速度より小さくな るが、心柱の加速度は大きくなる傾向を示した。

表-3 常時微動記録から得られた モードの固有振動数

モートの回有振動致 単位(Hz) NS方向 EW方向 モード名 塔身 心柱 塔身 0.88 0.88 0.89 心牡 113 118

					1
Vhr	塔身	0.88	0.88	0.88	0.89
-次	心柱		1.13		1.18
- VIII	心柱	1.89	1.89	1.80	1.80
_次	塔身	2.30	2.30	2.36	2.36
- Viet	心柱		3.64		3.64
三伏	塔身	3.97		4.10	
my	心拧		4 32		4 59

図-7 地震観測記録 加速度波形

図-8 地震観測記録 フーリエスペクトル比

地盤に対する各点のフーリエスペクトル比を図-8に 示す。一次の固有振動数は、NS方向で0.915Hz、EW方 向で0.952Hzと微動観測時より大きくなった。微動観測 で見られた心柱の一次固有振動数の立ち上がりは小さい。 外乱のレベルにより、振動性状が異なっていることが伺 える。

7. 五重塔のモデル化

7.1 モデル化概要

地震応答解析によって、建物の振動性状を評価するこ

とを目的として、五重塔のモデル化を試みた。

解析モデルについて、塔身は五層のせん断モデルとした。心柱の脚部はピン支持と仮定し、7 質点の梁要素とした(図-9)。

心柱の節点は、相輪の最頂部、相輪の下部、心柱上の 地震計設置高さ、地震計設置位置の中間部に設けた。塔 身については、各柱頭部の横架材レベルに節点を設けた。 塔身と心柱は、2章の「建物概要」で記述したように、 五重の最上部でくさびを介して接続されているため、五 重屋根高さにある心柱の節点6と塔身の五重の水平変位 が一致するものと仮定した。 解析には、株式会社構造システム SNAPVer.7を用いた。

7.2 質量・ヤング係数等

塔身の主となる木材材種はケヤキであった。また、塔 身の質量は、2015~2016年改修工事時の木材の材積調 査と大石寺内の三門の実測調査より得た、ケヤキの単位 質量 0.59t/m³の積とした。さらに、それらの質量に、各

表-4 質量 (a) 塔身

部位	材積 (m ³)	単位 質量 (t/m ³)	木材 質量 (t)	銅板 ・防水 質量 (t)	合計 (t)
五重	52.5	0.59	31.05	1.869	32.9
四重	38.9	0.59	22.98	1.281	24.3
三重	52.0	0.59	30.74	1.361	32.1
二重	54.6	0.59	32.29	1.427	33.7
初重	85.1	0.59	50.30	1.472	51.8
				総合計	174.8t

(b) 心柱

心柱 節点 番号	地盤面か らの高さ (mm)	形状	外接 円 半径 (mm)	断面積 (mm ²)	長さ (mm)	単位 質量 (t/m ³)	木材 質量 (t)	相輪 等質 量(t)	合計 (t)
7	32867	円形	95	28501	2818	0.59	0.10	0.52	0.6
6	27232		184	95766	5127	0.59	0.29	1.03	1.3
5	22614		225	142676	5108	0.59	0.43	0.00	0.4
4	17016	八	244	168503	4513	0.59	0.45	0.00	0.4
3	13589	用	262	194064	4342	0.59	0.50	0.00	0.5
2	8333	形	285	230078	4567	0.59	0.62	0.00	0.6
1	4456		298	251511	4027	0.59	0.60	0.00	0.6

総合計 4.4t

表-5 塔身の初期剛性

	NS方向	EW方向
層	初期剛性	初期剛性
	kN/mm	kN/mm
五層	15.91	17.48
四層	16.36	17.91
三層	15.14	16.50
二層	14.93	16.17
初層	10.74	11.55

層の屋根仕上げ、および防水材料の実測質量を加えて求め、節点に配置した(表-4(a))。

心柱の材種は、最上部のみヒノキであり、それ以外は ケヤキであった。また、心柱の単位質量は、塔身と同様 に 0.59t/m³とした。断面形状は、建物内は八角形であり、 相輪部のみ円形であった。心柱の質量は、節点間中央の 部材断面と単位質量の積とし、相輪部の節点 6、7 は相 輪の質量を加算した(表-4 (b))。

次に、塔身節点に塔身質量を配置し、心柱上の節点に は、心柱質量を配置した。

心柱の材料定数は、普通構造材¹⁷⁾ ケヤキの繊維方向 特性値からヤング係数 8000N/mm²、せん断弾性係数は ヤング係数の 1/15 とした。

7.3 初期剛性

塔身の剛性については、塔身の各部材を考慮した3次 元立体フレームモデルの増分解析結果から、各層のせん 断バネを算出した。また、心柱の剛性は、部材断面から 梁要素に置換した。なお、微動計測で得られた固有振動 数と振動モードを表現するため、ヤング係数とせん断弾 性係数は2.1倍した。塔身の方向ごとの初期剛性を表-5に示す。

7.4 固有值解析

固有値解析結果を表-6に示す。図-10 に、心柱・ 塔身の一次、二次の固有振動モードと想定されるモード を示す。各固有振動数に対応するモードは観測値のモー ドとなっていることが確認できた。

	エードタ	振動数	刺激係数		
伏奴	モード治	f	βx	βy	
	塔身NS	0.916	2.335	0.000	
一次	塔身EW	0.952	0.000	2.497	
	心柱NS	1.112	-1.084	0.000	
	心柱EW	1.112	0.000	-1.208	
	心柱NS	1.913	-0.652	0.000	
二次	心柱EW	1.916	0.000	-0.612	
	塔身NS	2.533	0.463	0.000	
	按 fe FW	2 638	0.000	-0.381	

表-6 固有值解析結果

8. 五重塔の地震時の振動特性

減衰定数は剛性比例型減衰とし、直交方向の挙動も合わせて評価していると考えられる微動観測より得られた 減衰定数と、地震観測記録におけるフーリエスペクトル 比の応答倍率を考慮し、h=0.016とした。

塔身五重 NS 方向の応答加速度波形を図-11 に観測値 と合わせて示す。下段には主要動付近である 20 秒から 30 秒までを示した。主要動については概ね再現してい るが、高次の応答に違いが見られる。応答加速度の最大 値は、観測値 5.8cm/s² に対し、4.4cm/s² とやや小さく なっている。

地盤に対するフーリエスペクトル比を図-12 に示す。 図より、二次固有振動数が異なっている。また、5Hz 以 上について、観測値に見られる応答が解析モデルでは小 さい。したがって解析モデルでは剛性比例型減衰を設定 したが、非比例型減衰の設定などが今後必要になると思 われる。

また、心柱の解析結果は観測とは異なっていた。心柱 は、塔身とは五重のみで接続されていることから、心柱 の接合部の剛性、減衰定数の設定を含め、調整が必要と 考える。さらに、地震観測とそのシミュレーションを 行って、解析モデルの適用性を確認していく必要がある。

9. まとめ

静岡県大石寺の五重塔について、微動時、地震時の振 動特性、人力加振試験による減衰定数を求めた。その結 果、

- i. 一次固有振動数は、微動時で 0.88Hz、地震時で は 0.916Hz を示した
- ii. 人力加振による建物の減衰定数の推定値は 0.036
 ~0.048 を示した

また、せん断型の振動解析モデルを作成した。固有値 解析、観測地震の建物応答のシミュレーション解析の結 果より、

i. 塔身をせん断モデル、心柱を梁要素とした質点モ デルで実測した固有振動数とモード形状を再現す ることができた。ただし剛性については、振幅レ ベルに応じた調整が必要である

ii. 地震時の建物応答のシミュレーション解析を行い、 減衰定数の設定など、今後の課題を確認した

10. あとがき

五重塔の振動特性、耐震性の把握を目的として、観測 値とシミュレーション結果を比較し、減衰定数等の検討 課題を確認した。

また、微動記録、人力加振試験、観測地震において、 建物の応答は、微小な変形レベルの応答だった。駿河ト ラフ、南海トラフを震源とする巨大地震に対するシミュ レーションには、剛性の非線形性の設定などが今後の課 題となる。

地震計設置に当たり、大石寺には多大なご協力を頂いた。五重塔の立体三次元フレームモデルの作成に当たっては、株式会社構造システム川邉氏に多くのご協力・ご助言を頂いた。宮大工の株式会社アイチケン三輪氏、林氏には、五重塔の調査、修理時の情報を頂いた。地震記録の波形処理は、国立研究開発法人建築研究所のViewWaveVer2.2.2.0 を利用した。

関係各位に心より感謝の意を表す。

【参考文献】

- 藤田香織他、「伝統的木造五重塔の振動特性に関する 研究」、第11回日本地震工学シンポジウム、 2002.11、pp.1529-1534
- 植田康夫他、「教王護国寺(東寺)五重塔の振動特 性」、日本建築学会大会学術講演梗概集、2002.8、 pp.893-894
- 広瀬恵美他、「構造形式の異なる2基の五重塔の振動 特性」、日本建築学会近畿支部研究報告集、1994、 pp.297-300
- 本下顕広他、「興福寺五重塔と三重塔の振動特性について」、日本建築学会近畿支部研究報告集、2000、 pp.401-404
- 5) 平瀬恵美他、「人力加振実験による五重塔の振動特 性」、日本建築学会大会学術講演梗概集、1994.9、 pp.1114-1120
- 5) 井上郁朗他、「醍醐寺五重塔の振動特性」、日本建築 学会大会学術講演梗概集、2003.9、pp.851-852
- 7)藤田香織他、「伝統木造五重塔の振動特性に関する研究(その2 池上本門寺五重塔の微動測定)」、日本 建築学会大会学術講演梗概集、2002.8、pp.251-252
- 内田昭人他、「伝統的木造建築物の振動特性(その2 法隆寺五重塔の常時微動測定)」、日本建築学会大会 学術講演梗概集、1996.9、pp.171-172
- 林 弘倫他、「伝統的木造五重塔の振動特性に関する 研究(その7 妙宣寺五重塔の微動測定)」、日本建 築学会大会学術講演梗概集、2009.8、pp.541-542

- 超坂弾行他、「伝統的木造建築物の振動特性(その 11、旧寛永寺五重塔の振動実験)」、日本建築学会大 会学術講演梗概集、2003.9、pp.467-468
- 11) 登坂弾行他、「伝統的木造建築物の振動特性(その 12 日光東照宮五重塔の振動実験)」、日本建築学会 大会学術講演梗概集、2004.8、pp.245-246
- 12)内田昭人他、「伝統的木造建築物の振動特性(その 13 最勝院五重塔の振動実験)」、日本建築学会大会 学術講演梗概集、2005.9、pp.491-492
- 13)前川秀幸他、「伝統的木造建築物の振動特性(その 14 中山法華経寺五重塔の振動実験)」、日本建築学 会大会学術講演梗概集、2006.9、pp.467-468
- 14)前川秀幸他、「伝統的木造建築物の振動特性(その
 15 厳島神社五重塔の振動実験)」、日本建築学会大会学術講演梗概集、2007.8、pp.407-408
- 15) 石倉英幸他、「瑠璃光寺五重塔と厳島神社五重塔の 振動特性の比較」、日本建築学会近畿支部研究報告 集、2004、pp.177-178
- 16) 麓 和善、「伝統を永遠に」総本山大石寺五重塔修 復工事六四三日全記録、大日蓮出版、2017.3
- 「木質構造設計基準・同解説」、日本建築学会、 2006.12、p.399

パッシブリズミング空調の機能拡張

-その2 冷房時、暖房時の快適性と省エネルギー性-

Upgrading of Control Functions of Passive Rhythmic Air-Conditioning System

- Part2 Efficiency of Comfortability and Energy Conservation on Cooling and Heating -

岩下将也*

要 旨

パッシブリズミング空調システムは、空調を一定の時間間隔で発停させることで、温度変化に所 定のリズムを与え、快適性を損なわずに空調エネルギーを削減する技術である。既報において温度 だけでなく湿度を考慮した制御を行うことで、空調の稼働時間を短縮できる方法について述べた¹⁾。 本報では、この方法の有効性を確認するため、夏期と冬期において、被験者実験と省エネルギー効 果の比較実験を行った。その結果、温度と湿度を同時に考慮した制御を適用したパッシブリズミン グ空調では、稼働時間の短縮をしても快適性が損なわれることなく、より省エネルギーな運転とな ることを確認した。

キーワード:パッシブリズミング空調システム、温湿度、PMV

1. はじめに

近年、社会情勢の変化に伴い、産業エネルギーに占め る建物の消費エネルギーの割合が増加しており、これら を削減させるため、国による継続的な施策が講じられて いる。2009 年度、経済産業省より 2020 年以降の新築公 共建物をネット・ゼロ・エネルギー・ビル(以下、ZEB) として建設するビジョンが掲げられ、それ以降、ZEB の定義の決定²⁾、助成制度³⁾も進められている。すでに 低層・中小規模ビルにおいては ZEB となる建物の実績 が出始めており、今後は、より大規模な建物で ZEB を 実現させていく段階を迎えようとしている。

ZEB では、建物全体のエネルギー消費量に対し、空 調エネルギーの比率が大きくなると考えられ⁴⁾、ZEB の建物規模を拡大していくには空調エネルギーの削減が 重要な課題となる。また、平成 29 年度より省エネ法が 改正され、2000m² 以上の非住宅においては設計段階で のエネルギー消費量が規制されることとなった。今後は、 先進的な建物に限らず、多くの非住宅建物でエネルギー 削減のための設計や、技術開発が求められる。

当社では 1996 年に(国研)建築研究所、三機工業 (株)と共に「パッシブリズミング空調システム」を共 同研究・開発している⁵⁾。パッシブリズミング空調シス テムは、建物の空調熱源の種別を問わず比較的安価に導 入ができ、空調のエネルギーを削減することが可能な制 御技術であり、ZEB の実現や事務所ビルの省エネル ギー化に寄与することが期待される。従来のシステムに 対し、省エネルギー性能をさらに向上させることを目指 し、温度だけでなく湿度を考慮した空調稼働時間の短縮 制御機能を考案した。この制御機能の有効性を実験に よって確認したため、これについて報告する。

2. パッシブリズミング空調システムの概要

2.1 システムの概要

図-1にパッシブリズミング空調の概要を示す。一般 的な空調が、時間変化のない均一な温度を維持するのに 対し、パッシブリズミング空調システムは、空調を定期

*技術研究所

的に停止させ、温度に周期的な時間変化を与える。この リズムが快適性に寄与することを被験者実験で確認して おり⁵、空調を停止させても連続運転させた場合と同程 度の快適性を得られ、空調の停止により省エネルギー効 果が得られる。

2.2 パッシブリズミング空調システムの快適性

パッシブリズミング空調システムの発想は、久野の提 唱する二次元温冷感モデルの(図-2)による。2次元 温冷感モデルでは、人間の温熱感を、人体生理状態(体 の熱さ、冷たさ)と、周囲環境状態(温度の高さ、低さ) を軸とした2次元平面で表す。平面の原点は、人体生理 状態と周囲環境状態が平衡している中立域であり、その 周辺は、「暖かい」、「暑い」、「涼しい」、「寒い」などの 感覚にカテゴリー化される非中立域となる。非中立域の 中の暖かい、涼しいなどの感覚は、中立域より快適性が 増進する(積極的な快適性)と考える。パッシブリズミ ング空調システムは、計画的に空調を発停させ、急な環 境変化を与えることで、快適性を損なうことなく空調を 停止させるシステムである。

2.3 システム構成と制御方法

パッシブリズミング空調システムの研究は 1996 年か

ら開始しており、2016年には多点の温湿度センサを用いる構成に変更し、温湿度を考慮することで稼働時間の さらなる短縮を行う制御機能を加えた。変更後のシステムを図-3に示す。

夏期冷房時と、冬期暖房時の従来の制御方法と、時間 短縮制御の違いを図-4、図-5に示す。一般的な空調 が時間変化の少ない均一な温度の維持を目標に連続的に 稼働するのに対し、パッシブリズミング空調システムは、 空調を20分稼働させ、10分停止させる。このリズムが 快適性に寄与することが被験者実験で確認されており、 空調を連続運転させた場合と比較して快適性を損なうこ となく省エネルギー効果が得られる。従来の機能(以下、 従来制御)に対し、温湿度を測定し、ここから総合的快 適性指標である PMV を推定、この推定値の1サイクル あたりの時間平均値に応じて稼働時間を短縮させる制御 機能を加えた(以下、時間短縮制御)。これにより湿度

が快適性に有利に作用する状況(夏期冷房時は湿度 50% 未満、冬期暖房時は湿度 40%以上)においては、空調の 稼働時を 20 分から最大で 15 分まで短縮させ、より省エ ネルギーとなる。

3. 時間短縮制御の快適性実験

時間短縮制御によって快適性が損なわれないことを確認するため、冷房時と暖房時で、実験室内での被験者実験を行った。

3.1 実験パターン

実験パターンを表-1に示す。本実験では時間短縮制 御を従来制御と比較し、快適性を損なうことなく省エネ ルギーとなっていることを確認する。また、通常の連続 運転との比較も参考として行っている。

3.2 実験用諸室

図-6に実験に用いた諸室の平面図を示す。2 つの実 験室、前室、待機室の計4室で構成される。実験室は、 各実験パターンの環境を再現するため、任意に温湿度を 調整可能な部屋としている。ここに被験者(1~最大4 名)を暴露させ快適性等に関するアンケートを実施する。 待機室は、実験を開始する前や、各実験の間に被験者が 待機するために温度が適温に調整された空間となってい

実験パターン	内容
時間短縮制御	湿度条件を40%とし、15分運転、10分停止 を3サイクル(計75分)行う。空調設定温度 は22℃とする
従来制御	従来のパッシブリズミング空調制御。湿度 条件を50%とし、20分運転、10分停止を3 サイクル(計90分)行う。空調設定温度は 22℃とする
」建続運転	空調を稼働(計90分)している状態。空調 設定温度は22℃とする

る。実験室と待機室を結ぶ前室は、実験室に供給する外 気の温度を予熱、予冷させる機能を持たせている。

3.3 各室の空調設備と温湿度の調整法

両実験室にはビル用の壁掛け空調機、1時間当たり0.5 回の換気が可能な排気ファン、加湿器1台が設備されて いる。待機室では置き型の空調機、前室には外気を予 冷・予熱するための壁掛け空調機、除湿器、加湿器がそ れぞれ1台設備されている。

夏期の冷房実験においては、待機室の除湿器を使用し て外気を除湿する。冬期の暖房実験においては、待機室 の加湿器を使用して供給外気を加湿する。実験室間で湿 度を変える場合は、実験室内の加湿器を使用する。

実験室の温度変化については、空調機の ON/OFF 制御 によって行う。この ON/OFF 操作をもって、各パッシブ リズミング空調の想定環境を再現する。

	男	女
	Yシャツ(半袖)	ブラウス(半袖)
夏期実験	スラックス(冬用)	スカートorズボン(冬用)
	肌着	肌着
	靴下、靴	靴下、靴
	上着(作業着)	上着(作業着)
	Yシャツ(半袖)	ブラウス(半袖)
冬期実験	スラックス(冬用)	スカートorズボン(冬用)
	肌着	肌着
	靴下、靴	靴下、靴

表-2 被験者の着衣条件

表-3 被験者の人数、男女比、平均年齢

実験パターン		人数	人数 男女比		実験 回数
夏期実験	稼働時間短縮制御	32	0.41	28.7	9
	従来制御	33	0.42	29.6	10
	連続運転	8	0.50	33.4	3
冬期実験	稼働時間短縮制御	30	0.40	33.3	9
	従来制御	29	0.41	33.4	10
	連続運転	8	0.50	25.6	3

3.4 被験者条件

被験者はオフィス勤務を想定した表-2に示す着衣条 件とする。ただし、インナーシャツ等の肌着については、 個人の嗜好もあるため、任意としている。表-3に、被 験者の人数と男女比、平均年齢を、図-7に被験者の年 代構成を示す。男女比は、男が5割から6割を占める。 実験室は最大で4名までしか滞在できないため、十分な 被験者の回答を得るために複数回の実験を行っている。 また被験者のスケジュールの都合などから実験パターン ごとの実験回数は異なっている。参考とする連続運転で は、被験者数、実験回数が特に少なくなっている。

3.5 アンケート内容と集計処理

アンケート項目を図-8に示す。被験者には3問のア ンケートを回答させる。環境の正確な評価をするため、 回答の時間間隔を5分とした。各項目に1ポイントの差 がある間隔尺度を用い、このポイントを合算・平均する ことで全体の回答結果の代表とする。

4. 実験結果

4.1 夏期冷房実験

a. 室内環境

夏期の実験パターン別の実験室の温度、湿度、推定 PMV の時間推移と時間平均を図-9に示す。時間短縮 制御、従来制御においては、空調の稼働時に温度が低下 し、停止時に上昇している。温度の時間平均値は時間短 縮制御で最大となっており、稼働時間が短いほど温度が 上昇していることがわかる。湿度については、大きな変 動はなく時間短縮制御で時間平均湿度42%、従来制御、 連続運転では時間平均湿度が50%となっており、計画通 りの湿度環境が形成されている。推定 PMV は温度変化 と同様の上下推移となっているが、時間平均値で見ると、 時間短縮制御と従来制御はほぼ等しい。従来制御と比較 して、時間短縮制御では温度がわずかに高いが、湿度が 10%ほど低くなっているため、結果として PMV がほぼ 等しくなっている。

b. 被験者実験結果

制御パターン別の温冷感、快適感、湿度感の時間推移 と時間平均を図-10 に示す。温冷感、快適感ともに空 調の稼働状況に応じた変化をしている。湿度感は稼働に よらず大きな変化はなく、偏差も少ない。温冷感の時間 平均値はほぼ等しく、また快適感の時間平均値は時間短 縮制御のほうが、わずかではあるが快適側となっている。 夏期冷房時の湿度が低い環境においては、温度がわずか に上昇する制御をしても、快適性は損なわれないものと 考えられる。

c. 省エネルギー効果測定結果

制御パターン別のエネルギー消費量を図-11 に示す。 被験者実験の際は、外気条件のばらつき、加湿器の放熱

温冷感評価		快適感評価		_	湿度感評価		
4	寒い	3	非常に不快		3	非常に乾いている	
3	少し寒い	2	不快	1	2	乾いている	
2		1	やや不快	ĺ	1	やや乾いている	
0	ふつう	0	ふつう	ĺ	0	ふつう	
-1	少し暖かい	-1	やや快適		-1	やや湿っている	
-2	暖かい	-2	快適	İ	-2	湿っている	
-3	少し者い 暑い	-3	非常に快適		-3	非常に湿っている	

図-8 アンケート項目

や人体の発熱の違いなどがあるため、空調のエネルギー 消費量は実験ごとに別日に測定している。連続制御と比 較して、従来制御で 21.2%、時間短縮制御で 29.1%省エ ネルギーとなっており、従来制御と比べて 7.9 ポイント 低下する効果が確認された。

4.2 冬期暖房実験

a. 室内環境

冬期の制御パターン別の温度、湿度、推定 PMV の時間推移と時間平均を図-12 に示す。時間短縮制御、従 来制御においては、空調の稼働時に温度が上昇し、停止 時に低下している。参考としてとっている連続運転はサ ンプル数が少ないためか、温度推移が安定していない。 温度の時間平均値は時間短縮制御が最も低くなっている。

湿度については、時間短縮制御で平均湿度52%、従来 制御、連続運転では平均湿度が40%、41%となっており、 計画通りの湿度環境が形成されている。

推定 PMV は、温度変化と同様のカーブを描いている が、夏期実験と同じく時間平均値においては時間短縮制 御と従来制御はほぼ等しくなっている。

b. 被験者実験結果

制御パターン別の温冷感、快適感、湿度感の時間推移 と時間平均を図-13 に示す。温冷感、快適感ともに空 調の発停状況に応じて変化している。湿度感は発停によ る大きな変化は少なく、ばらつきも少ない。時間短縮制 御のみは、少し涼しいという結果が出ているが、その時 においても快適感はそれほど変化がない。熱的快適性は 温冷感だけで決まるわけではないことが示唆される。

時間平均の温冷感、快適感、湿度感を見ると、温冷感、 快適感、共に従来制御と比較して時間短縮制御において 同等以上の結果となっている。冬期暖房時の湿度が高い 環境においては、温度がわずかに低下する制御をしても、 快適性は損なわれないものと考えられる。

c. 省エネルギー効果測定結果

夏期の実験と同様、被験者実験時とは別日に測定している。図-11 に測定結果を示す。連続運転と比較し、 従来制御で28.9%の削減効果、時間短縮制御で34.8%の 省エネルギー効果が出ており、従来制御に比べて5.9 ポ イント省エネルギー性が向上していることが確認できた。

図-9 夏期冷房実験時の各測定項目の時間推移と時間平均値

6. まとめ

パッシブリズミング空調システムの発停機能に関して、 稼働時間を短縮する制御を考案し、従来の制御と比較し た場合の快適性に関する被験者アンケートとエネルギー 消費量の比較実験をし、その有効性を確認した。湿度が 有利な条件(夏期冷房時は低湿度、冬期暖房時は高湿度) においては、空調の稼働時間を短縮しても快適性は失わ れず、かつ省エネルギーな運用が可能となることがわ かった。今後は実建物における検証をしていきたい。

図-12 冬期暖房実験時の各測定項目の時間推移と時間平均値

図-13 冬期暖房実験時のアンケート結果の時間推移と時間平均値

【参考文献】

- 岩下将也、茂木正史、稲留康一、「パッシブリズミン グ空調の制御機能の拡充」、 奥村組技術年報 No.43、 2017.10
- たとえば、環境共創イニシアチブ 「平成 28 年度 ネット・ゼロ・エネルギー・ビル実証事業」
- 3) 経済産業省 、「ZEB ロードマップ検討委員会 とり まとめ」 2016.12.17
- 4) 岩下将也「建築環境シミュレーション技術を活用したゼロエネルギービルの試設計」、奥村組技術年報 No.42、2016.9
- 5) 坊垣他、「パッシブリズミング空調における快適性と 省エネルギーに関する研究」、空気調和・衛生工学論 文集、No.64、1997.1
- 6) 久野 覚、「温熱環境の快適性とプレザントネス」、
 建築雑誌、Vol.110、No.1373、1995、6月号

複数の卓越周波数を含む騒音に適用した アクティブ消音システム

Application of Active Noise Control System to Noise

Including Multiple Predominant Frequencies

金澤朗蘭* 竹本光慶** 出雲理祐***

要旨

アクティブ消音システムとは、スピーカから騒音と逆位相の音を出力して騒音を打ち消す、騒音 の対策技術である。このシステムは、エンジン音のように、防音壁などの従来の対策方法では低減 が難しい低音域の音の対策に有効である。建設機械にアクティブ消音システムを適用する場合、エ ンジン音の主な音源である排気筒の近傍にスピーカを設置し、逆位相の音を出力することで、周囲 の広い範囲で効果が得られる。エンジン音は、作業に応じて周波数が変動するため、その変動に追 従し対応できるシステムを既に開発した¹⁾。建設現場で使用する機械のエンジンは、排ガスなど環 境への影響を考慮して年々改良されるため、それに伴いエンジン音についても変化しており、単一 の卓越周波数のみならず、複数の卓越周波数をもつものが存在している。そこで、単一のみならず 複数の卓越周波数を含む騒音について逆位相の音を出力できるシステムを開発した。建設現場にお いてコンクリートミキサー車および発電機に適用し低減効果を確認したので、概要を報告する。

キーワード:アクティブ・ノイズ・コントロール、エンジン音、騒音対策

1. まえがき

アクティブ消音システムは、バックホウやクレーン車 などのエンジン音の騒音対策として、建設現場で適用さ れている(実績:バックホウ2件、クレーン2件、発電 機1件)。上記のエンジン音は、低音域において単一の周 波数の音圧が卓越し、周囲へ大きな影響を与える。この ため、既に開発したアクティブ消音システムは、図-1 に示すように、単一の卓越周波数をもつ騒音を消音の対 象としており、約10dBの効果を確認していた。

しかし、建設機械には、単一ではなく複数の卓越周波 数をもつエンジン音を発生するものも多い。機械の動作 によって複数の卓越周波数が変動し、その変動幅や音圧 は発生機構によって大きく異なる。そこで、複数の周波 数に対応し、騒音低減効果を高めるため、アクティブ消 音システムの機能を拡充した。

機能を拡充したアクティブ消音システムを、実際の建 設機械(コンクリートミキサー車および発電機)のエン ジン音に適用し、対象とした複数の卓越周波数の1/3オ クターブバンド音圧レベルを 5~9dB 程度、低減するこ とを確認した。以下、概要を報告する。

図-1 既開発のアクティブ消音システムの概念図

2. 卓越周波数の変動とシステムの概要

建設機械によって、卓越する周波数や音圧の変動は異なる。アクティブ消音システムを複数の卓越周波数に適 用させるため、建設機械のエンジン音を大きく2ケース に分類した。それぞれの変動特性を図-2に示す。図-

2(a)は、卓越する各周波数の変動(卓越する音の高さの 変動)は少ないものの、各卓越周波数の音圧が大きく変 動するケースであり、コンクリートミキサー車が例とし て挙げられる。建設機械のエンジン音の卓越周波数はエ ンジンの回転数で決まり、走行場所や負荷によってエン ジン音の各卓越周波数に大きな変動はないものの、各卓 越周波数の音圧については短い時間に大きく変動する可 能性がある。このため、単一の卓越周波数を対象として いた場合と同程度の計算時間が必要となる。

図-2(b)は、卓越する各周波数の音圧変動は小さい ものの、周波数が大きく変動する可能性があり、例とし て負荷によってエンジンの回転が変動する発電機などの 騒音が挙げられる。このようなケースでは、バンドパス フィルタの範囲を卓越周波数の変動範囲よりも大きくと り、さらにバンドパスフィルタ同士が互いに影響しない ように設計する必要がある。しかし、卓越周波数の変動 範囲が広い場合、バンドパスフィルタの範囲が重ならな いように設計するのは難しい。

以上の課題を解決するため、図-2(a)のケースでは、 複数のバンドパスフィルタを用意し、それぞれのバンド パスフィルタで処理した騒音の卓越周波数を取り出し、 並列に処理(以下、並列タイプ)することで、単一の卓 越周波数を対象とした場合と同程度の処理時間を可能と

した。また、図-2(b)のケースに対しては、複数の卓 越周波数が変動する範囲よりも広い範囲をもつバンドパ スフィルタを複数用意し、それぞれのバンドパスフィル タを直列に設けることで、フィルタ間の影響を除去する 方法とした(以下、直列タイプ)。考案したそれぞれの 制御方法について、概要を3章で述べる。

3. 複数周波数へ適用したシステム

3.1 基本的な制御方法

複数の周波数を対象とした制御方法は、単一の卓越周 波数の制御方法を複数組み合わせる方法であるため、ま ず、単一の卓越周波数を対象とした制御方法について概 説する。

単一の卓越周波数を対象とした場合における、制御方 法のフローを図-3に示す。同定時間を短縮させるため、 制御用マイクからの入力信号をバンドパスフィルタに通 過させ、同定範囲を限定する。バンドパスフィルタを通 過した信号に LMS アルゴリズムを適用し、時間領域で 卓越周波数を同定する¹⁾。バンドパスフィルタを通過し た信号は、制御用マイクで観測した信号に対して振幅や 位相が変化しており、対象とした卓越周波数の音と同振 幅・逆位相とならず、音圧を低減できない。このため、 あらかじめ設定した補正値を用いて信号を補正すること で、対象の卓越周波数の音と同振幅・逆位相の音を出力 する。

(a) 並列タイプの制御方法 (b) 直列タイプの制御方法 (b) 直列タイプの制御方法 図-4 複数の卓越周波数に対応したアクティブ消音システムの概念図

卓越周波数の同定時間は、LMS アルゴリズムにおけ るステップサイズパラメータの値によって変わる²⁾が、 対象音の変動速さに適した値を選択することで、対象音 の卓越周波数が1秒以内に30Hz、かつ卓越周波数の音 圧が20dB変動する場合でも、十分に対応可能である。

3.2 複数の卓越周波数に対応した制御方法

複数の卓越周波数に対応したアクティブ消音システム の概念図を図-4に示す。図では一例として、対象騒音 の卓越周波数が3つの場合を示している。

図-4(a)は、卓越周波数の変動が少なく、音圧の変 動が大きなケースに対応した制御方法であり、複数の異 なるバンドパスフィルタを並列に接続したものである。 この制御方法では、マイクからの入力音が各卓越周波数 を含む範囲をもつ複数のバンドパスフィルタへそれぞれ 同時に入力し、それぞれの処理系統で入力音と逆位相の 音が計算され、最終的に一つの信号に合算してスピーカ へ出力される。

図-4(b)は、卓越周波数の変動が大きく、音圧の変 動が小さいケースに対応した制御方法である。卓越周波 数の変動が大きな場合、小さな幅のバンドパスフィルタ では複数の卓越周波数を捉えるのが難しい。このため、 この方法では、大きな周波数範囲のバンドパスフィルタ に入力信号を1度通過させた後、逆位相の信号処理を直 列に接続する。まず、最も音圧の大きい卓越周波数につ いて逆位相の音を計算する。入力音の卓越周波数の音を 除去した信号を用いて、次に音圧の大きい卓越周波数の 逆位相音の計算に使用する。順次、逆位相音の計算を繰 り返したのち、それぞれの逆位相音を合算してスピーカ に出力する。

並列タイプは、各卓越周波数の音圧の大きさに関係な く、逆位相音を同時に計算するため、効果を得るまでの 時間は単一の卓越周波数を対象とする場合とほとんど変 わらない。しかし、直列タイプは、各卓越周波数に対し て順番に逆位相音を計算するため、効果を得るまでの時 間は単一の卓越周波数を対象とする場合よりも長くなる 傾向がある。このため、直列タイプは図-2(b)のよう に、頻繁に音圧が変動することが少ない騒音に適してい る。また、並列タイプは各フィルタの範囲が直列タイプ と比較して狭いため、卓越する周波数の変動が小さい図 -2(a)のような騒音に適している。

上述の制御方法は、事前に対象とする騒音の卓越周波 数や変動特性を把握し、特性に合わせて制御方法を選択 するため、大きな効果が期待できる。

4. 適用効果

4.1 並列タイプの適用例

並列タイプの制御方法を用いたアクティブ消音システムを、音圧変動の大きなコンクリートミキサー車の騒音に対して適用した。アクティブ消音システムの適用状況を写真-1に示す。コンクリートミキサー車のエンジン音の主な音源は排気筒であり、排気筒の近傍でスピーカ

写真-1 アクティブ消音システムの適用状況 (コンクリートミキサー車)

図-5 排気筒近傍における騒音の周波数特性

図-6 マイクの配置

から逆位相の音が出力するよう、スピーカおよびマイク の配置を決めた。なお、制御用のパソコンなどは、運転 席内に配置した。事前に計測したコンクリートミキサー 車の騒音の周波数特性を図-5に示す。図は、騒音源で ある排気筒近傍で計測した音圧の周波数特性である。図 より、エンジン音は 80~130Hz において、4~16Pa(約 100~120dB)程度の音圧をもつ、複数の卓越周波数を 含んでいることがわかる。そこで、制御の対象周波数を 81Hz、96Hz、112Hz、130Hzの4つとし、各周波数の前 後 10Hz、20Hz の範囲をバンドパスフィルタの範囲とし た。制御の時間刻みは1波長を128点以上に分割するこ とを想定し、1/25,600s とした。また、アクティブ消音 システムの効果を確認するために設置した計測用マイク の配置を図-6に示す。コンクリートミキサー車は停止 状態として、実際の走行時と同程度のエンジン回転数と なるよう、エンジンを作動させ(約1500~2500rpm)、ア クティブ消音システムの制御の有無によるマイク位置で の1/3オクターブ音圧レベルを計測した。

計測結果を図-7~図-9に示す。図-7は、制御時 の排気筒近傍におけるエンジン音と、スピーカ近傍にお ける出力音である(高速回転時:2500rpm 程度)。図より、 排気筒からのエンジン音と、スピーカからの出力音はほ ぼ逆位相となっていることがわかる。図-8に制御の有 無による、卓越周波数の音圧レベルが急激に変動する範 囲を含むスペクトログラム(横軸が時間、縦軸が周波数、

図-8 制御の有無によるスペクトログラム

図-9 アクティブ消音システムの効果 (計測マイク位置、30 秒間の平均値)

カラーマップで音圧レベルの大きさを示す図)を示す。 81Hz、96Hz、112Hz、および130Hzにおいて、卓越周波 数の音圧レベルが低減していることがわかる。また、制 御なしの120秒付近および制御ありの130秒付近を比較 すると、エンジンの回転数が変化して卓越周波数が急激 に変動しても、効果が得られることが確認できる。さら に図ー9に、図ー6に示した計測用のマイク位置におけ る、制御の有無による1/3オクターブバンド音圧レベル の計測結果を示す。対象とした卓越周波数を含む帯域で ある、80Hz帯域(81Hz)、100Hz帯域(96Hz、112Hz)、 125Hz(130Hz)帯域において、それぞれ約5dB、5dB、 8dB低減できることを確認した。

4.2 直列タイプ適用例

直列タイプの制御方法を用いたアクティブ消音システ ムを、音圧変動が小さい発電機音(発電のために作動す るディーゼルエンジンの音)に対して適用し、効果を確 認した。適用状況を写真-2に示す。発電機音の音源は コンクリートミキサー車の場合と同様、排気筒である。 スピーカおよびマイクは、排気筒の近傍に配置した。事 前に計測した発電機音(エンジン音)の周波数特性を図 -10 に示す。図は、騒音源である排気筒近傍で計測し た音圧の周波数特性である。発電機音は、コンクリート ミキサー車の場合と同様、複数の卓越周波数を含んでお り、75Hz、150Hz、164Hz で卓越していた。そこで、各 卓越周波数を対象として、バンドパスフィルタの範囲を これらの卓越周波数を含む65~180Hzとした。制御の時 間刻みは並列タイプの場合と同様、1/25,600sとした。 アクティブ消音システムの効果を確認するための計測用 マイクは、図-11 に示すように制御用のスピーカから 2m の位置とし、コンクリートミキサー車の場合と同様、 アクティブ消音システムの制御の有無による、1/3オク

写真-2 アクティブ消音システムの適用状況(発電機)

図-12 発電機音とスピーカからの出力音

図-13 卓越周波数を含む帯域音圧レベルの時系列変動

ターブ音圧レベルの差を効果とした。

計測結果を図-12~図-14 に示す。図-12 は、制御 時の排気筒近傍における発電機音と、スピーカ近傍にお ける出力音を示す。計測時、発電機のエンジン回転数は 1600rpm であり、排気筒からは約 75Hz、約 150Hz、約 164Hz で卓越する音が発生していた。図より排気筒から の発電機音(エンジン音)と、スピーカからの出力音は ほぼ逆位相となっていることが確認できる。図-13 に、 75Hz、および 150Hz、164Hz を含む 1/3 オクターブバン ド音圧レベル(80Hz 帯域、および 160Hz 帯域)の時系列 変動を示す。図中に示した制御開始点までは制御なし、 開始点以降に制御を開始とした。制御を開始した時点以 降から卓越周波数の音圧レベルが低減していることが確 認できる。また、制御の開始から効果が得られるまでの 時間は約 0.6 秒であった。直列タイプの場合、同時に複 数の卓越周波数の逆位相音を計算する並列タイプと比較 すると、効果が得られるまでに若干の時間が必要である が、1 秒以内には効果が得られることを確認した。図-14 に、計測用マイク位置における、制御の有無による 1/3 オクターブバンド音圧レベルを示す。対象とした卓 越周波数を含む帯域において、9dB(80Hz 帯或)、8dB (160Hz 帯域)の効果を確認した。

5. あとがき

複数の周波数に対応できる機能を拡充したアクティブ 消音システムを開発した。機能を拡充したアクティブ消 音システムを実際の建設機械(コンクリートミキサー車 および発電機)のエンジン音に適用したところ、対象と した複数の卓越周波数の1/3 オクターブバンド音圧レベ ルを 5~8dB 程度(コンクリートミキサー車)、8~9dB 程度(発電機)、低減することを確認した。

今後は、効果を向上させる制御方法を検討するととも に、より多くの現場への適用を考慮して、耐久性や小型 化を検討していきたい。

【参考文献】

- 金澤朗蘭、安井健治、柳沼勝夫、「フィードフォワー ド型能動制御による重機騒音の低減効果」、日本建築 学会環境系論文集第82巻732号、pp.97-103、2017.2
- 2)金澤朗蘭、柳沼勝夫、安井健治、稲留康一、「アク ティブ・ノイズ・コントロールの制御方法に関する研 究一騒音変動に対する追従性能の検討ー」、奥村組技 術研究年報、No.42、pp.101-106、2016.9

除去土壌の再利用に向けた技術の実証

-輸送管理へのVRの活用と破砕選別処理実証試験-

Technology Enabling Reuse of Cesium Contaminated Soil

- VR for Transport Management and Verification Testing of Crushing and Sorting Process -

今井亮介* 大塚義一* 白石祐彰** 小西正郎***

要 旨

平成29年から中間貯蔵施設が稼働しており、輸送対象の除去土壌等が放射性セシウム等を含むこ とから安心安全を担保するための輸送技術、大量の除去土壌等を連続的に処理する技術、及び30年 後の県外処分を念頭に置いた長期安定的な埋立貯蔵のための可燃物分の除去技術が求められている。 それに対処する技術として、運転手教育の充実を図るための輸送管理ツールの開発、及び高含水率 の除染土壌を適切に改良するための方法や有機系可燃物の効率的分離方法に関する評価試験を実施 した。輸送管理ツールに関しては、運転手等に高い関心を抱かせる効果が期待できる VR (バー チャルリアリティー)を導入した試走行学習素材を作成し、試験運用した。また、評価試験は、除 去土壌を短時間で改質する資材選定のための室内試験、実規模機器を用いた大型土のうの荷下ろし と破砕性能、及び土壌試料を用いた改質効果発現性と模擬可燃物の分離性能に関する実証試験を実 施し、中間貯蔵事業への適用可能性に関する知見を収集した。

キーワード:中間貯蔵施設、VR、破砕選別処理、改質材、実証試験

1. まえがき

除染で発生した約2,200万m³の除去土壤等を中間貯蔵 施設で処理する施設の稼働が平成29年から始まり、ま た、その翌々年度までに仮置場から同施設に除去土壤等 を1,250万m³輸送する計画が立てられている¹⁾。この 計画を円滑に実施するために中間貯蔵事業では、安心安 全を担保するための輸送の管理技術や大量の除去土壌を 確実・連続的に破砕選別し、かつ将来の再利用に向けて 可燃物等を適切に除去して長期安定的に埋立貯蔵するた めの技術が求められている。輸送時のトラブルは、平成 30年3月現在でルート逸脱が7件発生していることが報 告されている²⁾。輸送計画に基づくと、今後の中間貯蔵 施設への受入れ量は加速度的に増大する。そのため、放 射性物質を含む除去土壌等という特殊性に対処する点か らは、輸送等の管理技術をさらに向上させることも重要 な検討事項である。

また、受入れた除去土壌を中間貯蔵施設で分別処理す る数量は、平成 29 年度までに約 50 万 m³、同 30 年度に 90~180 万 m³、次年度は 160~400 万 m³、その次の年度 に 200~600 万 m³とする計画が公表されている。現時点 では、これらを 8 つの受入・分別処理施設で処理して埋 立貯蔵する計画であり、この大量の受入れ量を確実で迅 速に処理できる施設の建設運営も求められている¹⁾。 この実現のためには、用いる機器の組み合わせ構成とと もに、機器性能を効果的に発現可能な機器配列について 評価しておくことが重要である。

このような背景から、中間貯蔵事業に資するための技術として輸送管理ツールの構築、及び受入・分別処理施設において大量処理を具現化するための要素技術に着目した実証試験を実施した。前者については、間違いやすい侵入箇所を実際の動画で疑似体験する「VRを導入する方法で車両運転手教育を実施するツール」を作成し、試験運用した。後者については、「輸送車両からの迅速で安全な除去土壌(大型土のう)の荷下ろし方法」、「異物が除去土壌中に混在していた場合でも大型土のう破袋処理の連続性を維持するための破袋・破砕方法」、「2次分別に阻害を及ぼすような土質に対する効率的な改質方法」、及び「大型土のう破砕片等の可燃物が混在している場合の分離方法」に関する実証試験を実施し、より高い分別処理効果を実現するための技術的検証を行った。以下に、これらに関する詳細を述べる。

*土木本部環境技術室 **技術研究所環境研究グループ ***東日本支社福島復興再生事務所

2. VR を用いた車両運転手の教育管理ツールの開発

2.1 目標とする教育管理ツール

運行車両のルート間違いは、しばしば起こり得る事象 である。資機材を運搬する一般車両では、ルート間違い は元の道に戻ること等で解消可能であり、大きな支障が 生じることは殆どない。しかしながら、放射性物質を含 む大型土のうの輸送車両がルート間違いをした場合は、 線量による周辺環境への影響懸念を引き起こす等で沿道 住民の方の不安をあおる契機となる。そのため、大型土 のうの輸送車両のルート間違いを未然に防ぐことは非常 に重要な安全管理要素の一つとなっている。一般的には、 机上教育での運転手教育の実施やルート間違い発生後の 周知教育等で是正する方法が用いられている場合が多い。 しかしながら、従事運転手数が多い場合にはこれらの教 育形態が集合教育とならざるを得ず、また臨場感が乏し くなることや個々人の集中力が欠如する等で期待する効 果を十分に発揮できない場合がある。そこで、臨場感と 個々人の集中力を高める方法として VR を導入した安全 教育管理方法を考案した。この方法による教育では、実 際の運行経路と間違いやすい曲がり角等を動画で確認で きるようにすること、及び個々人の集中力を高める方法 とすることを目標とした。

2.2 教育管理ツール構築に用いた資機材

VR による教育管理用の動画素材をできるだけ簡便に 作成するために、車両に搭載して対象ルートを撮影する ための 360 度カメラ、その動画を学習者がゴーグル内で 視聴して学ぶための VR ゴーグルと動画再生用のスマー トフォンの3つを用いた。これらの資機材の仕様と用途 を表-1に示す。これらは、汎用品で入手も容易であり、 費用面でも大きな障害になるようなものではない。写真 -1に VR ゴーグルの使用状況を示す。

2.3 教育管理ツールの構築方法

教育管理ツールの作成に当たっては、教育目的と対象 者を明確にした上で教育内容を構築することが重要とな る。当該試作においては、除去土壌等の輸送に従事する 運転手を対象として輸送ルート上のトラブル対策を学べ ることを基本コンセプトとした。そのための教育カリ キュラム例を図-1に示す。カリキュラムは、一般教育、 試走&危険体験教育及び再発防止教育の3教程とし、後 者の2つについて VR を活用することとした。VR 動画 の作成は、次に示す手順で作成した。

- i. 走行ルートにおける間違いやすい箇所やトラブル が予測される箇所を抽出
- ii. 該当あるいは類似箇所を含む撮影ルートを選定
- iii. 360 度カメラを搭載した車両で選定ルートを走行 して素材動画を撮影
- iv.素材動画を市販ソフトで編集。編集においては、 教育エッセンスを含みかつ受講者の飽きを招かな

表-1 VR教育管理ツール構築用資機材の仕様と用途

機材名	仕様	用途
360度カ メラ	スマートフォンで再生可能 な動画が撮影できるもの	学習ルートの動 画撮影
スマー トフォ ン	動画再生可能なもの(通信 機能は不要)	VR ゴーグルで 動画を再生
VRゴー グル	スマートフォンを装着可能 なもの	学習者がスマー トフォン動画で 疑似体験学習

写真-1 VR 教育の状況

い程度の時間を設定(試作版では10分以下)

- v. 複数人で動画を見ながら「所定の教育コンテンツ 映像となっているか」、及び「注意喚起文字や再 発防止のための注意書きなどの挿入文言箇所」な どを確認して動画最終版を作成
- vi. 特徴的な確認箇所や目印等を音声で案内する必要 性を検討し、必要性が高い場合には動画に合わせ たナレーションを挿入

2.4 展開状況と課題

VR を用いた教育は、実際の映像を用いた走行体験と トラブル遭遇時の体験ができるため、教育効果の向上が 期待できる。ただ、作成に手間がかかることや受講者が VR ゴーグルの操作に慣れる必要があるなどの課題もあ る。また、作成した VR 動画を実際の除去土壌等を運搬 する大型車両運転手に視聴してもらい、使い勝手を体験 してもらった結果からも操作性の点などで改善の余地が

図-1 試作した教育管理ツールのカリキュラム例

あることが分かった。今後、実運用する該当現場で日常 的に動画を撮影してそれを加工する運用も計画しており、 より簡便にトラブル発生を回避するためのツールに改善 する予定である。

3. 大型土のうの荷下ろしに関する実証試験

3.1 実証試験の概要

現在、仮置場に保管されている大型土のう(1袋当た りの容積は約1m³で重量は約1.4t)は、10t積みダンプ トラック1台当たり原則として6袋を積載して中間貯蔵 施設の受入・分別処理施設に搬出され、荷下ろし後は貯 蔵施設に埋立てるための改質や可燃物分の分離・除去等 の処理が施される。その処理量に関する現時点での中間 貯蔵要求水準仕様は140t/hで、1日12時間の稼働が計画 されている。そのため、搬入された大型土のうは1時間 当たり100袋以上の荷下ろしが必要になる。また、除去 土壌中には放射性セシウムが含まれており、長時間の近 接作業が必要となる場合には被ばく量が増大するリスク がある。一般的な大型土のうの荷下ろしには、人力によ る玉掛け、クレーンでの吊り込み荷下ろし後に玉外しす る方法が基本である。また、効率化を図るために複数袋 の玉掛けや自動で玉外しする治具の導入等が実施されて いる実態もある 3)。ここでの実証試験では、大型土の うを吊り具を用いずに把持できる装置(フレコンハンド ラー)を用いて所要仕様以上の効率的な荷下ろしが可能 かどうかを評価した。この方法による確実な荷下ろしが 可能になれば、操作重機の運転手が、一人で遠隔で荷下 ろしができ、玉掛け作業員が土のうに近づく必要がなく なるため、転落リスクや放射性物質による被ばくリスク を大きく低減できる。実証試験は、一般土壌で実施した ことから被ばくについての評価は行っていないが、荷下 ろし速度等について評価したのでその結果を以下に示す。

3.2 実証試験の方法

実証試験では、除去土壌を模擬した大型土のう6袋を 積載したダンプトラックとフレコンハンドラーを装着し た重機を用いて、大型土のうの荷下ろし速度と土のうが ダンプトラックの荷台上で隙間なく積載された状況でも フレコンハンドラーによる把持が可能であることを確認 した。荷下ろし重機は、産業廃棄物処理で使用されてい るキャビンが昇降するタイプのものを用いた。試験は、 ダンプトラックに密な状態で積載された大型土のうを把 持し、180度旋回で定位置に荷下ろしするサイクルタイ ムを測定するとともに、フレコンハンドラーで把持して 荷下ろしした後の大型土のうの損傷の有無及び把持重機 の運転席からの遠隔操作性を評価した。実証試験状況を 写真-2に示す。

3.3 実証試験の結果

サイクルタイム測定結果を表-2に示す。また、荷下

写真-2 フレコンハンドラー実証試験

表-2 大型土のう荷下ろしサイクルに関する測定結果

項目	数値
フレコンハンドラーによる荷下ろし平均サ イクルタイムの実測値	42秒/袋
ダンプ1台分(6袋積載)の荷下ろし所要 時間(計算値)	252秒
荷下ろし重機1台で1時間当たりの荷下ろし可能量(計算値)*	120 t/h

※中間貯蔵施設受入・分別処理施設においては、140t/h が要求水準仕様(処理必要量)として規定されている

ろし後の大型土のう表面の観察結果から、土のう表面に 損傷が生じていないこと、及び見下ろすことのできる キャビンとフレコンハンドラーに装着したカメラで把持 位置を確認しつつ差し込むことのできる機能により、隣 接する3つの大型土のう間に発生する空隙を上手く活用 して把持することが可能であることを確認できた。

表から、中間貯蔵施設の受入・分別処理施設で求めら れている処理必要量140thを実現するためには、フレコ ンハンドラー装着重機を2台配備する必要があること、 及び荷下ろし施設においては最低2台分の荷下ろし場を 設けた施設計画が必要であることなどが明らかになった。

4. 除去土壌に対する改質材の室内選定試験

4.1 改質材の室内選定試験の概要

中間貯蔵施設に搬入される除去土壌は除染で発生した 表層土壌が主体であり、大型土のうへの封入時の状態が 対象土地の地目(庭土や農地など)及び天候や季節要因 (湿潤状態の差異など)で大きく異なり、適切な受入・ 分別処理を行うためには粘土分の改質や水分量の調整が 必要になる。また、中間貯蔵要求水準仕様では、中間貯 蔵受入・分別処理施設で処理して貯蔵施設に埋立てられ る土壌は20mm以下のものとすること、及び改質材添加 量(石膏系)は3%以下とすることとされている。また、 140th の受入・分別処理の連続性を維持しつつ改質を行 うことも求められている。この仕様を満足させるために は、「高い分級効果が得られること」、「短時間で改質効

					室	医内試験結:	果			評価		
No	改質材の分類	摘要	記号	積算改質 材添加量 (g)	改質材添 加率(%)	積算攪拌 時間(s)	改質土壌 含水比 (%)	回収率 (%)	改質材添 加量評価 ^{©:1.5%以下 ^{O:3%未満} ×:3%以上}	攪拌時間評 価 ◎:60S以下 ○:120S未満 ×:120S以上	回収率評 価 ◎:99%以上 ○:98%以下 ×:95%以下	備考
0	-	土壌のみ(ブランク)	Soil-BK	-	-	-	-	49	-	-	×	水田表層土壌
1	セメント系	エントリンガイト系	Cem-Dn	134	13.4	129	65.3	98	×	×	0	
2	石灰系(lime)	生石灰	CaO-LM	162	16.2	221	43.1	96	×	×	0	
3	石高玄(alaatau)	石膏系	Lime-EH	300	30	412	未計測	未計測	×	×	-	実証試験
4	石肖永(plaster)	石膏系(中性)	Lime-AN	6	0.6	265	23.1	99	O	×	O	
5		て高ナポリマー	LimeP-ZB	117	11.7	142	69.7	99	×	×	O	
5	高分子ポリマー		LimeP-EA	59	5.9	48	77.2	99	×	0	O	
6	(polymer)+増量材	ゼオライト+ポリマー	ZeoP-SΣ	12.7	1.27	80	78.8	100	O	0	O	実証評価
7	糸	ゼオライト+ポリマー	ZeoP-Sλ	6.2	0.62	89	79.1	99	O	0	O	
8		ポリマーのみ	P-AP	2	0.2	117	80.9	99	O	0	O	比較試験用
9		シリカアルミナ鉱物+ポリ マー	SiOP-OK	19	1.9	38	65.2	99	0	0	Ø	実証評価
10	酸化マグネシウム系	MgO系	Mg-GL	36	3.6	52	79.2	98	×	O	0	
11	ペーパースラッジ系	ペーパースラッジ系	Slug-MC	330	33	371	52	93	×	×	×	
12	炭酸カルシウム系	Ca系	Ca-Y	36	3.6	172	28.9	97	×	×	0	
13		Ca系+ポリマー	CaP-Y	15	1.5	96	32.5	99	O	0	O	実証後提供受

表-3 改質材に関する室内試験の結果

図-2 試験に用いた土壌の粒度分布

果を発現すること」及び「経済性も確保できること」の 全てを満たす改質材の選定が必要となる。そのため、こ れらを実現可能な改質材を選定する室内試験を実施した。 その試験結果を以下に示す。

4.2 改質効果を確認する室内試験

試験には、改質処理において障害が発生する懸念のあ る、粘性土系で含水率の比較的高い水田用地から採取し た土壌を用いた。また、改質対象の土壌に添加する改質 材は、改質土壌の初期含水比を高めないために粉末系で、 短時間で改質効果が期待できるものを選定した。これら の室内試験結果から、実機を用いる実証試験で添加効果 を確認するための改質材を絞り込んだ。室内試験に用い た土壌と選定した改質材、及び室内試験の方法を以下に 示す。

a. 試験に用いた土壌

茨城県の休耕田表層土壌から採取した土壌(水田表層 土壌)の粒度分布を図-2に示す。図には、実証試験に 用いた水田客土用土壌の測定結果も示した。

図-3 改質後土壌のふるい分け試験結果

改質材は表-3に示すように、セメント系1種類、石 灰系1種類、石膏系2種類、高分子ポリマー+増量材系 5種類、酸化マグネシウム系1種類、ペーパースラッジ 系1種類及び炭酸カルシウム系2種類の計13種類を選 定して、次に示す方法で改質効果を確認した。

c. 改質効果確認試験の方法

改質効果確認試験は、まず水田表層土壌 1kg をモルタ ルミキサーに投入して1分30秒攪拌した。その後に改 質材を適当量添加投入してモルタルミキサーを攪拌させ、 目視で改質効果を確認し、土質の改質が観察されるまで 改質材を少量ずつ追加添加する方法とした。攪拌を終了 した改質後の土壌は、目開き20mm、15mm、10mm、 5mm の4 種類をふるい試験にかけ、それぞれの通過重 量の測定と回収した試料の含水率を測定した。

改質効果の悪い改質材では、ミキサー攪拌翼への付着 土壌やふるい目への付着で回収率が低下する。そのため、 改質材の改質効果は、改質効果が得られた時点の積算添 加量、積算攪拌時間及び回収率で評価することとした。 回収率は、ふるいを通過した総回収重量と投入量の比で 求まる値とした。

試験の手順を i~x に示す。

- i. ミキサーに土壌を1kg入れ、1分30秒間撹拌し、 撹拌翼についた泥の塊を形成させる
- ii. 改質材を3g分取する
- iii. 改質材を小さじで適当量ミキサーに入れ撹拌する
- iv. 撹拌を中止し、土壌の性状変化を観察する
- v. 改質材を3g入れ終わったらii~ivを繰り返す
- vi. 土壌の改質が観察されれば、改質材の投入を中止 する
- vii. 撹拌時間の累計、及び改質材の投入量を記録する
- viii. 土壌をふるい振とう機に投入する
- ix. 振とうの目盛を最大にして10秒間運転する
- x. 各ふるいに残った(または通過した)土壌の重量 と含水比を測定する

4.3 試験結果

水田表層土壤のみを用いた攪拌試験結果(ブランク) と 13 種類の改質材の改質効果を確認した室内試験結果 を表-3に示す。改質材を添加した土壌の回収率はいず れも 90%以上の数値を得ており、ブランク(Soil-BK) のふるい後の回収率が49%であることから、改質材種類 による差異はあるものの、改質材を添加することで分級 効果が発現する結果を確認できた。また、改質材種類に より積算改質材添加量と積算攪拌時間には大きな差が生 じる結果が得られた。特に、中間貯蔵での現状仕様であ る石膏系(Lime-EH)は、ミキサー攪拌翼への付着が生 じて攪拌後試料の採取が困難になる結果が得られた。中 間貯蔵施設要求水準仕様、及び実機を用いた場合の許容 攪拌時間等から、少量での改質効果が望ましい積算改質 材添加量は、土壌に対する重量比について 1.5%以下を ◎、3%未満を○及び 3%以上を×とし、短時間での処理

効果発現が望ましい積算攪拌時間について 60 秒以下を ◎、120秒未満を○及び120秒以上を×とし、改質効果 発現で値が大きくなる回収率について 99%以上を◎、 98%以下を〇及び 95%以下を×とした定性評価を実施し た。また、×を呈する改質材を実際の受入・分別処理 に適用した場合、処理プロセスへの悪影響が発生する危 惧があることから、一つでも×の評価となったものは 選定対象から外すこととした。その結果、No.6、7、8、 9 及び 13 の改質材で 3 つの評価に×がない結果となっ た。この内の No.7 (No.6 と同系統) を除く 4 試料の改 質後土壌のふるい分け試験結果、及びブランクの結果を 図-3に示す。中間貯蔵の貯蔵施設には、20mm ふるい を通過した処理土壌が貯蔵されることから20mm以上の 割合を少なくする改質結果が望ましい。

図-3から明ら かなようにSoil-BK(ブランク)では20mm以上が92.1% の値を示したことに対し、P-AP (No.8)、SiOP-OK (No.9)、CaP-Y (No.13) 及び ZeoP-S 2 (No.6) はそれ ぞれ 0.9、0.7、0 及び 0.55 と、いずれも 20mm 以上は 1% 以下に改質されることが分かる。

写真-3 実証試験における機器配置状況

図-4 中間貯蔵施設における受入・分別処理の機器配置計画平面図案と実証試験の対象設備

これらの結果と、No.7 は No.6 と同系統であること、 No.8 は高分子ポリマー単体で添加量が少なくなり実機 適用時の攪拌性に危惧があること、及び No.13 は実証試 験後に提供を受けたことなどにより、実証試験で評価す る改質材としては、石膏単味の No.3、No.6 及び No.9 の 3 種類とすることとした。

5. 大型土のう破砕処理、土壌改質処理及び可燃物分離 に関する実証試験

5.1 実証試験の概要

実際の中間貯蔵受入・分別処理施設に配置することを 想定した機器構成は、フレコンハンドラーによる搬送ベ ルコンへの大型土のうの「荷下ろし設備」、フレコンク ロスカッターと二軸破砕機を組み合わせて大型土のうの を破袋処理する「2 段階破袋システム」、トロンメルに よる 100mm 以上の夾雑物を取り除く「一次分別処理」、 解砕機とパドルミキサーを組み合わせた改質処理の「多 重改質システム」、20mm 以下の通過分を回収するため の「トロンメルによる二次分別」、及び「SUPEX(熊手 式ふるい)による可燃物分離処理」を最終工程とする一 連の組み合わせとした。計画した機器配置計画平面図と 実証試験の対象とした設備を図-4に示す。また、実証 試験の機器配置状況を写真-3に示す。これらの機器構

写真-4 二軸破砕機による破砕試験状況 (自然石混入土のう:破袋時間22秒(164袋/h))

表-4 実証試験の実施試験ケース及び実証(二軸破砕、改質効果、可燃物分離)試験の結果 a. 二軸破砕機による大型土のうの破砕性能評価試験

		破袋前の大型土のう内容物				破袋後の計測値					破袋処理		
試験−土壌試	- ⇒ ⇒ ⇒ ⇒ → 毎 要 → ●		斗種類	模擬夾雑物(重量は下記に加え封入のう1袋 含む)		10mm以上 (0mm未清	大型土のうの約9	破袋処	備考
村名		種類	重量 (kg)	種類	重量 (kg)	回収物 量②	可燃物 量3 =2-④	不燃物 量④	(5) =(4)/(2)	回収物 量6	るまでの時間 (秒)	垤可能 量(袋/ 時間)	
破袋T1-SA	大型土のう3袋を一つの 土のうに封入したもの	川砂(SA)	918	大型土のう3袋	15.8	16.6	14.3	2.3	13.8%	852.6	11	327	 ・多重袋を確実に破袋した ・10mm以上のうち14%が不燃物
破袋T2-SB	夾雑物入り大型土のう3 袋を一つの土のうに封入	川砂(SB)	1022	稲わら(2kg),土のう大3袋+ 小10袋	18.2	60.6	-	-	-	894.6	10	360	・土のうを含む多重袋を確実に破袋
破袋T3-PA	大型土のうに可燃物混合 して封入	水田客土 (PA)	1164	稲わら(2kg)	6	36.6	11.8	24.8	67.8%	1114.6	-	-	・10mm以上のうち68%が不燃物
破袋T4-PB	大型土のうに可燃物+ブ ロック混合を封入	水田客土 (PB)	1038	稲わら(2kg), プロック5個(55.8kg)	61.8	62.6	-	-	-	1038.6	22	164	・コンクリートブロックを確実に破砕
破袋T5-PC	大型土のうに可燃物+自 然石混合封入	水田客土 (PC)	1034	稲わら(2kg), 自然石5個(77.9kg)	83.9	70.6	-	-	-	1012.6	22	164	・自然石を確実に破砕

b. 多重改質システム(RMZ+PM)による改質効果評価試験

<u>~ / ± -</u>			• (•																
	+谊					パドル3 (P	ミキサー M)	全水比	ふる	い分けサ	ンプリング	「重量(改)	町前)	ふるい	ハ分けサ:	ップリング	重量(改)	買後)	
	試試	改質材種	土壤試	改質材添	解砕機			(改質	 初期 	②10mm	310~	@20mm	(5)20mm	⑥初期	⑦10mm	®10~	(9)20mm	1020mm	計除力が用
	料の	類	料重量	加量(%)	(RMZ)周 波数	回転数	攪拌時	前)	量(kg)	未満	20mm	以上	通過率	量	未満	20mm	以上	通過率	試験の結果
	記号					(rpm)	間(s)	(%)	=(2)+(3)	(kg)	(kg)	(kg)	=1-(4)/	(kg)	(kg)	(kg)	(kg)	=1-(9)/	
									14				U		-		-		
改質T1-OK	PA	SiOP-OK	80	3	35	50	30		-	-	-	-	-	7.96	5.28	1.42	1.26	84%	至内結果等から比較ケース(SIOP-OR3%+ RMZ35Hz+PM30s)とした標準値(図-5,6)
改質T2-BK	PA	ブランク	"	なし	"	"	"		-	-	-	-	-	13.96	1.82	2.34	9.80	30%	水田客土土壌のみでは⑩は30%(図-6)
改質T3-OK	PA	SiOP-OK	"	3	"	"	"		-	-	-	-	-	10.89	6.43	2.56	1.90	83%	改質T1-OKの再現性あり(図-5)
改質T4-OK	PA	SiOP-OK	"	3	"	"	90		-	-	-	-	-	13.95	9.60	2.65	1.70	88%	PM攪拌時間増で⑩が増え若干改善(図-5)
改質T5-OK	PA	SiOP-OK	"	3	"	"	0	20.9	-	-	-	-	-	10.38	6.49	2.18	1.71	84%	PM攪拌なしでも標準と変わらず(図-6)
改質T5'-OK	PA	SiOP-OK	"	3	"	"	15		-	-	-	-	-	11.71	8.17	2.03	1.51	87%	PM攪拌時間15sでも一定の効果(図-5)
改質T5"-OK	PA	SiOP-OK	"	3	"	"	30	1	-	-	-	-	-	12	9.92	1.40	0.68	94%	PM攪拌時間30sで効果増(図-5)
改質T5'''-OK	PA	SiOP-OK	"	3	"	"	60		-	-	-	-	-	13.61	10.98	1.73	0.90	93%	PM攪拌時間60sで効果増(図-5)
改質T6-OK	PA	SiOP-OK	30	4	なし	"	30	1	-	-	-	-	-	12.76	4.12	2.74	5.90	54%	RMZ処理なくすと⑩が急減する(図-6)
改質T7-OK	PA	SiOP-OK	"	3	35	50	15	19.8	-	-	-	-	-	14.8	9.02	2.72	3.06	79%	PM攪拌時間15sでも一定の効果(図-5)
改質T8-OK	PB	SiOP-OK	50	3	"	"	45		-	-	-	-	-	14.64	9.64	2.46	2.54	83%	PM攪拌時間増で⑪ほぼ標準値(図-5)
改質T9-OK	PB	SiOP-OK	"	3	"	"	60		-	-	-	-	-	13.66	8.22	2.86	2.58	81%	PM攪拌時間増で⑩ほぼ標準値(図−5)
改質T10-EH	PB	Lime-EH	"	3	"	"	30		-	-	-	-	-	12.08	5.10	3.64	3.34	72%	石灰系改質材の効果少ない(図-5)
改質T11-BK	PB	ブランク	"	なし	"	"	"		-	-	-	-	-	10.4	3.64	3.26	3.50	66%	水田客土土壌のみの再測定
改質T12-AP	PB	P-AP	"	1	"	"	"	21.1	-	-	-	-	-	9.52	3.64	2.72	3.16	67%	ポリマ−のみはPM30sでは効果小(図-5)
改質T13-AP	PB	P-AP	"	1.0	"	"	90		-	-	-	-	-	11.86	6.52	3.28	2.06	83%	ポリマーのみはPM90sで効果発現(図-5)
改質T14-SΣ	PB	ZeoP-SΣ	"	2	"	"	30		-	-	-	-	-	10.46	4.62	2.92	2.92	72%	ゼオライトト系改質効果少ない(図-5)
改質T15-SΣ	PB	ZeoP-SΣ	"	4	"	"	"		-	-	-	-	-	11.32	4.98	3.34	3.00	73%	"
改質T16-SΣ	PB	ZeoP-SΣ	"	2	"	"	60		-	-	-	-	-	11.76	5.42	2.96	3.38	71%	ゼオライトト系改質効果少ない
改質T17-BK	SB	ブランク	80	なし	"	"	30		-	-	-	-	-	18.42	15.88	2.18	0.36	98%	写真画像による表面観察のために実施
改質T18-OK	PB	SiOP-OK	50	3	45	"	"		-	-	-	-	-	16.84	12.14	2.56	2.14	87%	RMZ回転数増で標準より⑩が3%改善(図-5)
改質T19-OK	PB	SiOP-OK	"	"	"	81	"		13.86	1.90	3.52	8.44	39%	16.48	12.18	2.72	1.58	90%	PA回転数増併用で標準より⑩6%改善(図-5)
改質T20-OK	PB	SiOP-OK	"	5	"	50	"		-	-	-	-	-	19.46	14.80	2.34	2.32	88%	改質材量増で標準より⑩が4%改善
改質T21-OK	PB	SiOP-OK	"	2	"	"	"	11.5	-	-	-	-	-	18.72	13.14	3.32	2.26	88%	改質材量減の影響少ない
改質T22-OK	PB	SiOP-OK	"	1	"	"	"		11.82	3.08	3.36	5.38	54%	19.4	11.10	5.16	3.14	84%	団粒土壌を追添加すると改質効果減
改質T23-OK	PB	SiOP-OK	"	3	"	"	"		-	-	-	-	-	19.96	11.94	4.12	3.90	80%	団粒土壌を追添加すると改質効果減(図-5)
改質T24-OK	PB	SiOP-OK	"	3	"	"	"	1	-	-	-	-	-	19.16	12.80	3.28	3.08	84%	標準の再現性が確認された(図-5)
改質T29-OK	PC*	SiOP-OK	604	3	なし	"	"	25.1			測定不能	1		50.40		43.0	7.44	85%	25.1%に含水調整した土の改質効果も確認
改質T30-BK	PC	ブランク	20	なし	45	"	"	-	9.86	1.76	2.40	5.70	42%	17.48		8.32	9.16	48%	BKの再測定
※:水田客土用	土壤(PC)に水分	を添加し	て含水比調	整したもの	5	•	•	•			•							+

c. SUPEX実証機による可燃物分離性能試験

	サンプリングした:試料(改	改質後土				SUPEX熊手	式ふるい分	別物					SUPEX	通過物		
試験名	質後)	壌投入重 量①(kg)	分別物の	0総量②	可燃物分③)(手選別)、割	合:③/②	不燃物分	④(手選)	別)、割合	:4/2	通過	物量⑤と	割合(⑤)	(1)	備考
可燃分離T1	改質T26,27,28-OK	32.46	1.76	kg	0.54 kg	1.6	6 %	30.56 k	g	3.75	%	30.56	kg	94.1	%	
可燃分離T2	改質T25,29−OK	29.34	29.34	kg	0.44 kg	; 1.8	9 %	28.06 k	g	2.86	%	28.06	kg	95.6	%	

成のうちの2段階破袋システムの後段に配置する二軸破 砕機による大型土のうの破袋性能、多重改質システムに よる改質効果及び SUPEX 実証機による可燃物分離性能 を評価するための実証試験を実施した。

5.2 実証試験の方法

実証試験は、次のa~cに示す3つの評価試験を実施 した。実証試験に用いた模擬の除去土壌は水田や校庭土 壌を除染で剥ぎ取ったものを模擬するために、水田客土 用の土壌及び川砂を大型土のうに充填したものを用いた。 また、模擬可燃物としては、稲わらを大型土のう1袋に 2kgを混ぜ込み、異物としては、ブロックあるいは自然 石5個を大型土のうに詰め込んだ。実証試験で実施した 試験ケースを表-4にまとめて示す。

a. 二軸破砕機による大型土のうの破砕性能評価試験

除去土壌を詰め込んだ大型土のうは、複数土のうが収 納されたものやブロックなどが混在している可能性があ ることから、受入・分別処理施設では大型土のうからの 除去土壌の取り出しと混在物を除去して、貯蔵に適する ように処理(20mm以下に分別し可燃物を除去)する必 要がある。また、放射性物質を含むことから、人力作業 を極力回避することや大量処理を実現するために連続処 理を損なわない機器配置が求められている。そのため、 大型土のうからの除去土壌の取り出しは、ウォーター ジェット切断で土のう底部を切り裂いて剥ぎ取る初段処 理に加えて、小型土のう、自然石やブロック片等の異物 が入っていた場合でも破袋処理することが出来るように、 後段に二軸破砕機を直列に配置した「2 段階破袋システ ム」の導入を想定した。一方、ウォータージェット切断 処理は実績 4) や著者らの知見(実機は当社らの工事所 で稼働中)があることから、実証試験では、同システム の後段に配置した二軸破砕機を用い、自然石等が混在し た場合の破砕性能の確認を目的として実施した。二軸破 砕機は、M&J イータプレシュレッド 4000 (産廃に対し 35t/hの処理能力を有するもの)を用いた。

b. 多重改質システムによる改質効果評価試験

中間貯蔵の受入・分別処理施設の要求水準書仕様では、 土壌の含水率を調整するための設備として、石膏系改質 材を30kg/t 添加したものを効率よく攪拌混合できる設備 2 基の配置と、改質材の添加量を必要最小限とすること が示されている。そのため、一般的に用いられている二 軸の攪拌翼で混合する方式のパドルミキサーに加え、そ の前段に攪拌混合効果を高めるための土壌を解砕して比 表面積を大きくする高機能土壌改質解砕機(RMZ マゼ タロウ)を導入する方法を考案した。実証試験では、解 砕処理の有無による改質効果と室内試験で選定した改質 材の適用性を評価した。

c. SUPEX 実証機による可燃物分離性能試験

土の除染は表層土壌の剥ぎ取りであることから、発生 した除去土壌中には枯葉や木の枝などの可燃物が相当量 混在している。これらは長期の中間貯蔵中に腐食等で分 解してガス化するため混入量を抑えることが望ましい。 中間貯蔵要求水準書仕様でも極力除去することが求めら れている。一般的な可燃物分離装置は、一次分別処理し たものをふるい目のより小さなトロンメルや振動ふるい 等の二次分別処理装置を配置して分別する方法が多いが、 著者らは災害廃棄物処理で導入した熊手式ふるい機構の SUPEX を用いた方法で高い分別効果が得られる知見⁵⁾ を有していることから、中間貯蔵施設における可燃物の 除去分離に対しても SUPEX を導入することを想定した。 SUPEX 実証試験には熊手式ふるいを一段とした実証機 を用いて、除去土壌中に混在させた稲わらの分別効果を 評価した。

d. 実証試験に用いた模擬除去土壌

実証試験に用いた川砂と水田客土用の土壌について、 それぞれの土壌物性を表-5及び図-2に示す。図から、 室内と実証試験で用いた土壌は、ほぼ同様の粒度分布特 性を示し、実証試験でも室内試験結果と同様の改質効果 を発現する土壌であると理解できる。

5.3 実証試験の結果

二軸破砕機による破砕試験状況を写真-4に示す。小型土のうを 10 袋詰め込んだ多重袋(表-4の破袋 T2-SB)の破袋を初め、最も破砕が困難と想定した自然石を含む大型土のうも 22 秒で破袋できることなどを確認できた。この破袋処理速度に基づけば、164 袋h(約230th)での処理が可能であり、中間貯蔵施設の要求水準書仕様である 140th を十分上回る能力があることを確認できた。

中間貯蔵要求水準仕様による破袋された後の除去土壌 の分別処理は、ふるい目開き 100mm のトロンメル等で 破袋土のう片等を除去する一次分別処理、その後に改質 材の添加・攪拌処理、さらに二次分別処理としてトロン メル等による 20mm ふるい分別で、その通過分が貯蔵施 設埋立て用の土壌として取り扱われる。そのため、改質 材の添加では、20mm ふるい通過分の回収率の高い改質 材を採用することが望ましい。この前提条件で、改質材 種類を変えて解砕機を通過させ、その後にパドルミキ サーで攪拌し、攪拌後の土壌を 20mm ふるいで手動分別 した試験結果を図-5及び表-4 b に示す。図より、 SiOP-OK 改質材を添加したものは何れも 80%以上が 20mm ふるいを通過する結果が得られた。改質材未添加 のブランク(表-4 改質 T2-BK 及び改質 T11-BK) は 20mm 通過分が 30%及び 66%であり、その他の改質材で

表-5 実証試験に用いた土壌の特性

~			24 ··· 11
=	上壤名称	川砂	水田客土用土壤
土粒子密度	g/cm ³	2.72	2.59
自然含水比	%	14.3	27.0
コーン指数	kN/m ²	5074	586
強熱減量	%	1.8	5.3
土質分類		礫質(SPG)	細粒分質砂(SF)

は 72%(同表改質 T10-EH 他)以下であることから、相 対的に SiOP-OK 改質材の適用により高い分別回収効果 が得られることが分かった。この結果から、室内試験結 果と同様に実機でも同改質材の適用が望ましいことを評 価・確認できた。

また、解砕機による改質の改善効果について測定した 結果を図-6に示す。図には20mm ふるいを通過したも のとともに10mm ふるいの通過分を測定した結果も示し た。図より改質材添加のない改質 T2-BK の 20mm ふる い通過率は30%以下であること及び解砕機処理のない改 質 T6-OK で 54%以下であることが分かる。また、解砕 機処理した改質 T5-OK と同 T1-OK の 20mm ふるい通過 率が 80%以上の結果が得られ、解砕機処理の効果は約 30 ポイントあることが分かる。このことから解砕機の 導入で改質材の攪拌効果が大きく改善されることを確認 でき、実機の設備に解砕機を配置する効果が高いことが 分かった。

SUPEX による可燃物の分離試験結果は、表-4 cの 可燃分離 T1 及び同 T2 に示すようである。大型土のうへ の可燃分(土壌重量 1.4t に対して稲わら 2kg)の初期混 合率は 0.14%であり、改質処理後にサンプリングして SUPEX 処理した後の回収率は 1.66%及び 1.89%となった。 この結果、初期混合率が微小であったことから適切な定 量評価に至らなかったが、稲わらを熊手式ふるいで有効 に回収できることを、目視により確認した。この点から、 SUPEX の適用は有効と考えられるが、課題としては評 価試験方法自体を再考する必要性が挙げられる。

6. まとめ

中間貯蔵事業に資するための技術として、輸送管理に おける教育ツールの開発及び処理性能が高くかつ連続処 理を可能にする受入・分別処理の機器構成に関する実証 評価試験を実施した。これらに関する試験検討の結果、 次のことを明らかにできた。

i. VR は比較的簡便に安全運行教育に活用でき、実際の運行ルート映像の視聴覚体験や特徴的な目印

図-6 解砕機処理の有無による改質効果評価試験 の確認が可能で、リスク回避教育ツールの一つと なり得る。一方、映像作成をさらに簡便にするこ

とや受講者の操作性の容易化を図る必要もある

- ii. フレコンハンドラー1台の導入で、大型土のうに 近づくことなく120t(約85袋)/hの効率で運搬 車両からの荷下ろしが可能で、2台配置で中間貯 蔵要求水準仕様を満たす。また、車両からの転落 リスクや放射線被ばくリスクも低減できる
- iv.水田客土土壌等を用いた実証試験結果より、二軸 破砕機を付加する2段階破袋で大型土のうの内容 物に拘わらず連続的に破袋処理が可能である。ま た、改質処理には解砕機と二軸破砕機を直列配置 する多重改質により、140t/h以上の処理が実現可 能である

今後は、これらについて実適用する機会を見出すとと もに明らかになった課題を解決していく必要がある。

最後に本実証試験を適切に遂行できたことは、計画へ の助言をはじめ、試料やサイトの調達・調整など、関係 各位と諸機関からの助力と協力の賜物である。この場を 借りてお礼申し上げる。

【参考文献】

- 環境省 HP、環境回復検討会(第 18 回)、「中間貯蔵 施設の進捗状況について」、2017.12.27
- 2)環境省 HP、中間貯蔵施設環境安全委員会(第 10 回)、 資料「中間貯蔵施設事業の状況について」、2018.3.22
- 伊藤秀樹、布宮明道、下田一朗、「遠隔操縦式バッ クホウ用大型土のう設置装置の開発」など、 http://www.thr.mlit.go.jp/Bumon/B00097/K00360/happyou kai/H27/2-11.pdf
- 4) https://www.shimztechnonews.com/hotTopics/news/2014/ s140930.html#13
- 5) 大矢好洋、埜本雅春、大塚義一、「東日本大震災の災 害廃棄物の密度と組成に関する考察」、奥村組技術研 究所年報 No.39、2013.9

磁選による放射性セシウム汚染土壌の乾式分級 -高炉スラグ微粉末の磁性材料としての利用-

Dry Classification of Radioactive Cesium Contaminated Soil by Magnetic Separator

- Usage of Ground Granulated Blast-Furnace Slag as a Magnetic Material -

白石祐彰* 樫木正成**

要 旨

放射性セシウム汚染土壌は土粒子が小さいほど汚染濃度が高くなるため、細粒土からなる汚染土 壌と基準を満たす粗粒土を分けること(分級処理)により、粗粒土は再生利用ができる。従前は、 水を使用して汚染土を湿式分級していた。しかし、湿式分級で発生する濁水は、細粒分の粒径が小 さくなると凝集沈殿処理が難しくなり、濁水の性状が変化すると凝集沈殿処理は安定しない。

そこで、全く廃水を出さない、模擬セシウム汚染土壌の乾式分級試験方法を検討した。高炉スラ グ微粉末を磁性材料として用い、2 段式格子型マグネットで磁力選別した結果、磁着試料(細粒分) は分級前の約 2.7 倍のセシウム濃度となり、分級前の約 20%の重量に濃縮できた。次に、放射性セ シウム汚染土壌で試験を実施し、ドラム型磁選機により細粒分と粗粒分に分級した結果、粗粒分は 試料の放射性セシウム濃度に対して 39~46%に低下した。

キーワード:放射性セシウム汚染土壌、高炉スラグ微粉末、乾式分級、磁力選別、ドラム型磁選機

1. まえがき

福島県で発生した、除染で取り除いた土や放射性物質 に汚染された廃棄物を最終処分するまでの間、安全に集 中的に管理・保管するための中間貯蔵施設は福島県内に 設置されることになっている。中間貯蔵施設に搬入され る除去土壌等は最大約2,200万m3と推計され、全量をそ のまま最終処分することは、必要な規模の最終処分場確 保等の観点から実現性が乏しい。最終処分が必要となる 量を減少させるためには、除去土壌等を本来貴重な資源 である土壌として何らかの形で利用することが考えられ るが、放射性物質を含む除去土壌等はそのままでは利用 が難しい。このため、適切な前処理や減容技術の活用に より除去土壌等を処理することで、放射能濃度の低い土 壌等を分離し、管理主体や責任主体が明確となっている 一定の公共事業等に限定して再生利用する。この再生利 用の対象となる土壌等(浄化物)の量を可能な限り増や すことにより、最終処分量の低減を図る方針が示されて いるり。

環境省が2016年3月30日に開催した中間貯蔵除去土 壌等の減容・再生利用技術開発戦略検討会(第3回)に おいて、再生資材の放射性セシウム濃度は8,000 Bq/kg 以下を原則とする旨が示された。放射性セシウム汚染土 壌は土粒子が小さいほど汚染濃度が高くなるため、細粒 土からなる汚染土壌と基準(8,000 Bq/kg以下)を満たす 粗粒土を分けること(分級処理)により、粗粒土は再生 利用ができる。

従前は、水を使用して汚染土を湿式分級し、シルト・ 粘土の微細粒子を除去していた。その際、湿式分級に伴 い細粒分を含んだ濁水が発生する。発生した濁水は凝集 沈殿処理を行い、脱水ケーキとして処分する。しかし、 細粒分の粒径が小さくなると熟練した技術者が対応しな い限りポリ塩化アルミニウム (PAC) と高分子ポリマー による凝集沈殿処理は難しくなる。また、濁水の性状が 変化すると凝集沈殿処理が安定しなくなるといった課題 がある。

そこで、磁力選別により全く廃水を出さずにセシウム 汚染土から高濃度の細粒分を磁着分離する、鉄および酸 化 Ca を含有する粉砕物を用いた乾式分級試験を実施し た²⁾。そして、鉄および酸化 Ca を含有する粉砕物の代 わりに市販されている高炉スラグ微粉末を用い、資源リ サイクルなどにおいて原料を磁性物(有価物)と非磁性物 (廃棄物)に選別するドラム型磁選機をセシウム汚染土壌 の分級処理に初めて適用したので報告する。

^{*}技術研究所環境研究グループ **東日本支社土木工務部

図-1 鉄および酸化Caを含有する粉砕物による粘土表面での被膜形成

2. 鉄および酸化Ca を含有する粉砕物を用いた乾式分 級の原理

鉄および酸化Caを含有する粉砕物は、鉄粉、酸化Ca および金属 Caを2:5:2の混合比とし不活性ガス雰囲 気下、遊星ボールミルを用いて 400rpm で1時間粉砕処 理を行い得られた粉砕混合物で、ナノサイズの複合体で ある³⁾。

鉄および酸化 Ca を含有する粉砕物は、土壌の間隙水 や表面付着水と反応して、全ての土壌に対して一定の厚 みの被膜を形成することができる(図-1)^{4,5}。ま た、図-2に示すように、その被膜内に共存する鉄粉と 土壌粒子サイズ、外部磁力との関係から乾式処理で土壌 微粒子のみを選択的に分離することが可能となる⁶。

3. 乾式分級試験に使用した材料および機器

3.1 材料

a. 磁性材料

鉄および酸化 Ca を含有する粉砕物の代わりに高炉ス ラグ微粉末を使用した。

高炉スラグ微粉末は、製鉄所の高炉より副生される高 炉水砕スラグを微粉砕して製造され、高炉セメント原料 や生コンクリート混和材などとして広く利用されている。

- 本試験では、以下の3種類を磁性材料として使用した。
- ・炉前水砕スラグを遊星ボールミルを用いて粉砕処理 を行い作成した高炉スラグ微粉末
- ・JIS A6206 (コンクリート用高炉スラグ微粉末) に 定められている高炉スラグ微粉末 8000
- ・ 遊星ボールミルによりさらに細かくした高炉スラグ 微粉末 8000 の粉砕物(粒径 0.1µm~1µm)
- b. 土壤
- (a) 摸擬セシウム汚染土壌

マサ土を風乾し、マサ土 10kg に塩化セシウム水溶液 (100mg/500ml)を噴霧器により少量ずつ加えながら、 ポッドミキサーを3分間回転させた(写真-1)。 その 後、目開き 2mm の篩でふるい、ふるい下の 2mm アン ダーの土壌を試験に用いた。

写真-1 摸擬セシウム汚染土壌の調製

(b) 放射性セシウム汚染土壌

福島県内にある中学校の校庭の土壌表層をすき取った 放射性セシウム汚染土壌を目開き 5mm の篩でふるい、 5mm アンダーの土壌を試験に用いた。

3.2 機材

a. 攪拌機

パン型ドラムに遊星回転する多段混練羽根を複数軸備 えた撹拌ミキサーを用いてセシウム汚染土壌と磁性材料 を混合撹拌した。ドラム内部を図-3に示す。アーム (公転)が多段混練羽根の全体を回転させて、ロータ (自転)がせん断混合の働きをする。そのほかの羽根に よって材料をドラム内で対流混合させる。

- b. 磁力選別機
- (a) 格子型マグネット

写真-2に示す2段式格子型マグネット(日本マグネ ティックス株式会社製)を磁力選別に使用した。マグ ネットの磁束密度は10,000 ガウスである。

(b) ドラム型磁選機

ドラム内部に磁石(最大磁東密度は約 6000 ガウス) が内蔵されていて回転する。ドラム表面に磁着した試料 が磁石の回転により移動することで分離分別を行う(図 -4)。

図-3 ドラム内部

写真-2 格子型マグネット

4. 試験方法

4.1 摸擬セシウム汚染土壌の乾式分級

a. 炉前水砕スラグを粉砕処理した高炉スラグ微粉末を 用いた分級

鉄および酸化 Ca を含有する粉砕物の代替として炉前 水砕スラグを粉砕処理した高炉スラグ微粉末が磁性材料 となることを確かめるため、以下の試験を実施した。

摸擬セシウム汚染土壌 50kg と炉前水砕スラグを粉砕 処理した高炉スラグ微粉末 5kgを撹拌後に風乾し(含水 率=2.2%)、試料 5kg を 2 段式格子型マグネットで磁力 選別した。ただし、1 回あたりの磁着量が少なかったた め、磁着しないで格子型マグネットを通過した試料を集 めて、写真-3~5の磁着および脱磁を繰り返した。磁 着および脱磁を 30 回繰り返したときに 1 回あたりの磁 着量がおよそ 20g となり、見た目に少量となったため磁 力選別を終了した。その後、磁着した試料および磁着し なかった残渣試料の重量とセシウム濃度と粒度分布を計 測した。

写真-3 格子型マグネットによる磁力選別

写真-4 磁着した試料

写真-5 脱磁による分級

2 段式格子型マグネットでの磁力選別により炉前水砕 スラグを粉砕処理した高炉スラグ微粉末が磁性材料とな ることを確かめられたが、磁着および脱磁を繰り返す作 業は現実性が乏しいので、現場適用性の向上のため、磁 力選別機を2段式格子型マグネットからドラム型磁選機 に代えて以下の試験を実施した。含水率を2.4%に調整 した摸擬セシウム汚染土壌 50kg と炉前水砕スラグを粉 砕処理した高炉スラグ微粉末 5kg を撹拌後に風乾し(含 水率=0.7~1.9%)、試料 1kg をドラム型磁選機で磁力選 別した。その後、磁着した試料および磁着しなかった残 渣試料の重量と粒度分布を計測した。

高炉スラグ微粉末 8000 を用いた分級

高炉スラグ微粉末 8000 は市販品であり、炉前水砕ス ラグより入手が容易である。そこで、炉前水砕スラグを 粉砕処理した高炉スラグ微粉末の代替として高炉スラグ 微粉末 8000 が磁性材料となることを確かめるため、以 下の試験を実施した。

摸擬セシウム汚染土壌 50kg と高炉スラグ微粉末 8000 の 5kg とを撹拌後に風乾し(含水率=2.2%)、試料 5kg を 2 段式格子型マグネットで磁力選別した。その結果、 1 回あたりの磁着量が少なかったため、磁着しないで格 子型マグネットを通過した試料を集めて、**写真-3~5** の磁着および脱磁を繰り返した。1 回あたりの磁着量が およそ 20g になるまで、磁着および脱磁を 20 回繰り返 した。その後、磁着した試料および磁着しなかった残渣 試料の重量とセシウム濃度、粒度分布を計測した。

4.2 放射性セシウム汚染土壌の分級

対象土壌を摸擬セシウム汚染土壌から放射性セシウム 汚染土壌に代えて以下の試験を実施した。含水率 2.5% 程度まで風乾させた土壌 62.5kg と高炉スラグ微粉末 8000 の粉砕物 5kg を撹拌後に風乾し(含水率=1.2~ 2.1%)、試料 7kg をドラム型磁選機で磁力選別した。パ ラメータとして以下の磁選機の可変条件を設定した。試 験ケースを表-1に示す。

- ・振動フィーダによる粉体移動速度
- ・振動フィーダの位置(図-5、6)
- ・受け板角度(図-7)
- ・受け板長さ

その後、磁着した試料および磁着しなかった残渣試料 の重量と放射性セシウム濃度(ゲルマニウム半導体検出 器法)、粒度分布を計測した。

また、高炉スラグ微粉末 8000 を用いて同様の分級試 験を実施した。試験ケースを**表-2**に示す。

5.結果および考察

5.1 摸擬セシウム汚染土壌の分級

a. 炉前水砕スラグを粉砕処理した高炉スラグ微粉末を 用いた分級

表-1 磁選機の設定条件(高炉スラグ微粉末 8000の粉砕物を用いた試験)

試料	インバータ目盛*	フィード位置**	受板長さ	受板角度
No. 1	55	— 0.5cm	115mm	33°
No.2	55	— 0.5cm	115mm	25°
No.3	55	-0.5cm	117mm	33°
No.4	55	-0.5cm	117mm	33°
No.5	55	+0.5cm	117mm	36°
No.6	65	— 0.5cm	117mm	25°
*イ 動速 **つ	ンバータ目盛が大き 2度が大きくなる 7ィード位置が一0.5 -0.5 cm移動した	きいほど振動フィ 5 cmlt、振動フィ	イーダによる イーダの位置	粉体移 を後ろ
	<u>مصلا</u>	— 109010101010101010101010101010101010101	0.100.10010	<u>£00 </u>
		試料が滑る	るように落む	53
図-5	磁選機の振動フィ	ィーダの位置を	後ろにずら	した場合
		2006070807080708070807	b8090b809080	0
		 試料の落ち	る距離間が	大きい
図-6	磁選機の振動フ	ィーダの位置を	前にずらし	た場合
		- 受け板 選機の受け板角	<u>でいるでいるでで</u> 1度を調整	

表-2 磁選機の設定条件(高炉スラグ微粉末 8000を用いた試験)

試料	インバータ目盛	フィード位置	受板長さ	受板角度
No. 1	55	—0.5cm	115mm	33°
No.2	55	—0.5cm	117mm	33°
No.3	55	—0.5cm	119mm	33°
No.4	55	—0.5cm	117mm	38°
No.5	65	-0.5cm	117mm	25°

摸擬セシウム汚染土壌と炉前水砕スラグを粉砕処理した高炉スラグ微粉末を撹拌した試料 5kgを2段式格子型 マグネットで磁力選別を30回繰り返したときの1回ご との磁着量の変化および磁着量の累計を図-8に示す。 磁着および脱磁を30回繰り返した結果、磁着量の合計 は982gに達した。炉前水砕スラグを粉砕処理した高炉 スラグ微粉末が磁性材料として成立することが分かった。

図-8 1回ごとの磁着量の変化および磁着量の累計 (炉前水砕スラグの粉砕物を用いた試験)

粒度分布の計測結果から磁着した試料および磁着しな かった残渣試料の粒径 0.25mm 以上の重量を図-9に示 す。粒径 0.25mm 以上の試料のおよそ 9 割は磁着しない で格子型マグネットを通過した。

分級前の 2mm アンダー試料のセシウム濃度は 7.1 mg/kg、分級後の磁着および残渣試料のセシウム濃度は 19mg/kg、4.5 mg/kg であった(表-3)。分級により磁 着試料は、分級前の 2mm アンダーの約 2.7 倍のセシウ ム濃度を分級前の約 20%の重量に濃縮できた。一方、残 渣試料は、分級前のセシウム濃度を約 4 割減少させるこ とができた。

摸擬セシウム汚染土壌と炉前水砕スラグを粉砕処理した高炉スラグ微粉末を撹拌した試料 1kg をドラム型磁選機で磁力選別した。磁選前の試料の含水率と磁着量および残渣量との関係を表-4に示す。試料 1kg に対し、磁着量は 30%を超え、最大 42%に達した。磁着前の試料

表一つ	3 各試制	料のセシ	ウム濃度	度	
(炉育	前水砕ス・	ラグの粉砕	砕物を用	用いた試験)

	試料	セシウム濃度 (mg/kg)	備考
分級前	2mmアンダー	7.1	分級前試料::5000g
八级场	磁着	19.0	分級後試料: 982g
万 拟 按	残渣	4.5	分級後試料:4018g

表-4 磁選前の試料の含水率と磁着量および残渣量

言书 半비 No	磁選前の含水率	磁着量	残渣量
i以个个INU.	(%)	(g)	(g)
1	0.7	424	568
2	0.8	412	574
3	1.0	412	586
4	1.8	326	667
5	1.9	351	640

(マサ土+炉前水砕スラグ)および残渣試料について粒 径 0.25mm 未満と粒径 0.25mm 以上に分けて図-10 に示 す。粒径 0.25mm 未満の試料が残渣に含まれていたのは 磁着前試料の約 6~12%であった。

b. 高炉スラグ微粉末 8000 を用いた分級

摸擬セシウム汚染土壌と高炉スラグ微粉末 8000 を撹 拌した試料 5kg を 2 段式格子型マグネットで磁力選別を 20回繰り返したときの1回ごとの磁着量の変化および磁 着量の累計を図ー11 に示す。磁着および脱磁を 20 回繰 り返した結果、磁着量の合計は 1293 gに達した。高炉 スラグ微粉末 8000 が磁性材料として成立することが分 かった。粒度分布の計測結果から磁着した試料および磁 着しなかった残渣試料の粒径 0.25mm 以上の重量を図ー 12 に示す。粒径 0.25mm 以上の試料のおよそ 8 割は磁着 しないで格子型マグネットを通過した。

図-12 磁着および残渣試料の粒径 0.25mm 以上の重量 (高炉スラグ微粉末 8000 を用いた試験)

まーち ダ	を試判のわい	いらん	濃度

	試料	セシウム濃度 (mg/kg)	備考
分級前	2mmアンダー	6.5	分級前試料::5000g
分級後	磁着	18.0	分級後試料:1293g
	残渣	4.5	分級後試料:3707g

分級前の 2mm アンダー試料のセシウム濃度は 6.5 mg/kg、 分級後の磁着のセシウム濃度は 18mg/kg であった(表-5)。分級により磁着試料は、分級前の約 2.8 倍のセシ ウム濃度を分級前の約 26%の重量に濃縮できた。

5.2 放射性セシウム汚染土壌の分級

5mm アンダーの土壌の放射性セシウム濃度は 1998Bq/kg、土壌 62.5kg と高炉スラグ微粉末 8000 の粉 砕物 5kg を撹拌後の試料の放射性セシウム濃度は 1764Bq/kgであった。

ここでは、磁選機の主な可変条件を選択することによ り6ケースの実験を行った。磁着しなかった残渣試料 (粗粒分)の放射性セシウム濃度および磁着試料(細粒 分)と残渣試料(粗粒分)の重量を表-6に示す。粗粒 分は686~818 Bq/kg となり、試料の放射性セシウム濃 度1764Bq/kgに対して39~46%に低下した。

試験ケースNo.4は、磁選機に試料を約7000g投入し、 細粒分4187g と粗粒分2807gに分級され、細粒分と粗粒 分の割合は60:40 であった。このときの試料およびNo.4 の粗粒分の粒径 0.25mm 未満と粒径 0.25mm 以上の土壌 の重量を図-13 に示す。No.4 の粗粒分は分級処理に よって試料の粒径 0.25mm 未満の土壌のおよそ 9 割が分 離されたことが分かる。この分級効果から No.4 の粗粒 分のセシウム濃度は試料の43%に低下した。

表-6 粗粒分のセシウム濃度および細粒分と粗粒分の重量

4 -7	濃度(Bq/kg)	重量(g)	
<i>//-</i>	粗粒分	細粒分	粗粒分
No. 1	773	4976	2041
No.2	705	5122	1920
No.3	686	3978	3040
No.4	760	4187	2807
No.5	793	4060	2907
No.6	818	3700	3750

図-13 試料とNo.4 粗粒分の粒径の違いによる重量の差

表-7 粗粒分のセシウム濃度および細粒分と粗粒分の重量 (高炉スラグ微粉末 8000 を用いた分級試験)

試料名	濃度(Bq/kg)	重量(g)	
	粗粒分	細粒分	粗粒分
No. 1	757	4628	2397
No.2	749	2553	3545
No.3	815	2944	2406
No.4	838	3941	3129
No.5	746	3951	3108

また、高炉スラグ微粉末 8000 の粉砕物の代わりに磁 性材料として高炉スラグ微粉末 8000 を用いて同様の分 級試験を実施した。5mm アンダーの土壌 62.5kg と高炉 スラグ微粉末 8000 の 5kg とを撹拌後の試料の放射性セ シウム濃度は 1584Bq/kg であった。

磁選機の主な可変条件を選択することにより5ケース の実験を行った。磁着しなかった残渣試料(粗粒分)の 放射性セシウム濃度および磁着試料(細粒分)と残渣試 料(粗粒分)の重量を表-7に示す。粗粒分の濃度は 746~838 Bq/kgとなり、試料の放射性セシウム濃度 1584Bq/kgに対して47~53%に低下した。

磁性材料として、高炉スラグ微粉末 8000 の粉砕物を 用いた場合と高炉スラグ微粉末 8000 を用いた場合の磁 選後の粗粒分のセシウム濃度を比較すると、前者の方が 小さくなった。しかし前者は、高炉スラグ微粉末 8000 を遊星ボールミルによりさらに細かく粉砕するという工 程が増える。一方、後者は、市販品をそのまま磁性材料 とすることができる。

6. まとめ

模擬セシウム汚染土壌の分級試験により、以下の結果 が得られた。

- i. 炉前水砕スラグを粉砕処理した高炉スラグ微粉末 を用いて2段式格子型マグネットで磁力選別した 結果、磁着試料は、分級前の2mmアンダーの約
 2.7倍のセシウム濃度を分級前の約20%の重量に 濃縮できた
- ii. 高炉スラグ微粉末 8000 を用いて2段式格子型マ グネットで磁力選別した結果、磁着試料は、分級 前の約2.8倍のセシウム濃度を分級前の約26%の 重量に濃縮できた
- 111. 炉前水砕スラグを粉砕処理した高炉スラグ微粉末
 を用いてドラム型磁選機で磁力選別した結果、粒
 径 0.25mm 未満の試料が磁着しなかった残渣試料
 (粗粒分)に含まれていたのは磁選前試料の約 6
 ~12%であった

また、放射性セシウム汚染土壌の分級試験から以下の 結果が得られた。

- i. 高炉スラグ微粉末 8000 の粉砕物を用いてドラム 型磁選機で磁力選別した結果、磁着しなかった残 渣の放射性セシウム濃度は 686~818 Bq/kg とな り、磁選前試料の放射性セシウム濃度 1764Bq/kg に対して 39~46%に低下した
- ii. 高炉スラグ微粉末 8000 を用いてドラム型磁選機 で磁力選別した結果、磁着しなかった残渣の放射 性セシウム濃度は 746~838 Bq/kg となり、磁選 前試料の放射性セシウム濃度 1584Bq/kg に対して 47~53%に低下した

以上の試験結果から、ドラム型磁選機による磁力選別 により細粒分と粗粒分に分級できることが明らかとなっ た。実現場における乾式分級の処理フローを図-14 に 示す。プロセス数が湿式分級よりも比較的少なく、処理 の流れが単純になっている。

7. あとがき

汚染土壌と高炉スラグ微粉末とを撹拌混合して試料を 調製する際には、土の粒子に高炉スラグが付着するため に土壌水分が無くてはならない。しかし、含水率が高い 場合、高炉スラグ同士や高炉スラグが付着した土粒子同 士が接着されることになるため、含水率を2.3%以下に する必要がある⁷。磁選を行う際には、基本的に水分量 が少ない方が土粒子同士が離れやすく分級効果が高まる が、含水率がある程度以下になると細粒分の重量が軽く なりすぎて大気中に拡散してしまう。このような水分調 整を大量の現地汚染土壌に対し円滑に行う手法の検討が 必要と考えている。

なお、県立広島大学の三苫教授に、遊星ボールミルを 用いた炉前水砕スラグの粉砕処理による高炉スラグ微粉 末を提供していただき、本研究を実施した。また、攪拌 機のドラム内部の図は、株式会社北川鉄工所から借用し た。

【参考文献】

- 1)環境省、「中間貯蔵除去土壌等の減容・再生利用技術 開発戦略(案)」、p.3、2016.3
- 白石祐彰、「磁力選別による模擬セシウム汚染土壌の 乾式分級試験」、奥村組技術研究年報 No.40、pp.64-71、2013.9
- 3) 三苫好治、福岡猛三、松江英彰、小林秀匡、白石祐 彰、梶谷幹男、「ナノカルシウムによる放射セシウム 汚染土壌の除染技術」、デコミッショニング技報 特 別号-福島環境回復技術一、pp.24-29、2013.6
- 4) 三苫好治、「ナノカルシウムによる放射性セシウムの

処理技術」、第 13 回インテレクチャル・カフェ広島 講演資料、2011.12

- 5) 白石祐彰、三苫好治、「ナノカルシウムによる摸擬セシウム汚染土壌の乾式分級試験」、環境放射能除染学 会第2回研究発表会 講演資料、2013.6
- 6) S.R.Mallamati, Y.Mitoma, T.Okuda, S.Sakita, M.Kakeda, [[]High immobilization of soil cesium using ball milling with nano-Fe/Ca/Cao dispersion mixtures] *Environ.Chem.Lett.*.DOI10.1007/s10311-012-0384-0(on line)
- 白石祐彰、三苫好治、「汚染物質を含有する固体の処 理方法」、特開 2017-148719、2017.8