損傷した耐震補強柱の再補強後の変形性能

The Deformability of Re-retrofitted Columns that Exhibited Large Hysteretic

Deformation

中村敏晴* 三澤孝史*

要旨

耐震補強した柱が地震により損傷を受けた場合、再補強が必要となる。しかし、大きな損傷を受けた柱の 再補強後の挙動に関する研究は少なく、大規模地震発生後の対策として課題が残されている。そこで、まず、 せん断破壊先行型の鉄道鉄筋コンクリートラーメン高架橋柱の縮小試験体を耐震補強して交番載荷試験を行 い、補強効果の確認を行った。次に、コンクリートのひび割れや、軸方向鉄筋の座屈等の大きな変形履歴を 受けた同試験体を補修・再補強し、再度交番載荷試験を行った。これらの結果より、補修・再補強後の耐震 補強柱の変形性能について検討した。

キーワード:鉄筋コンクリートラーメン高架橋、交番載荷試験、耐震補強、再補強、変形性能

1. まえがき

著者らは、これまで既設の鉄道鉄筋コンクリート(以下「RC」と記す)ラーメン高架橋柱の耐震補強工法として、「APAT 工法」(Aseismatic reinforcements by Precastblocks and Additional Tendons、以下「APAT 工法」と記す)¹⁾を開発してきた。これは、矩形断面の柱の側面に、ポリマーセメントモルタルを介し、櫛形のプレキャストコンクリートブロック(以下「セグメント」と記す)を張り付け、その外周にスパイラル状に加工した亜鉛めっき鋼より線(以下「鋼より線」と記す)を巻立て補強する工法である(図ー1参照)。

APAT 工法の利点としては、

- i. 柱の損傷状況を柱四隅のセグメントの無い部分か ら直接目視確認でき、セグメント表面に生じるひび 割れを介しても柱の損傷状況を推定できる^{1),2)}こと から、復旧時の臨時点検を迅速かつ容易に行える
- ii. 鋼板巻立て工法と同等以上の変形性能を有し、人力で容易に施工できる
- iii. セグメントと鋼より線が柱コンクリートを効果的
 に拘束することにより、せん断耐力の向上と優れた
 変形性能を発揮する

などが挙げられる。

耐震補強された柱が地震により大きな損傷を受けた場 合、部材の損傷状況を的確に把握し、再使用可能か否か の判断を行い、損傷の程度に応じた適切な補修や再補強 を加える必要がある。しかし、地震により大きな変形履 歴を受けた耐震補強柱の再補強後の挙動に関する研究は

*技術研究所

図一1 APAT 工法概念図

少ない3),4)。

本研究は、初めに、APAT 工法で耐震補強された柱の 試験体(以下「補強試験体」と記す)に対し交番載荷試 験を行い、次に、軸方向鉄筋の座屈等の大きな損傷を与 えた同試験体を再度 APAT 工法で耐震補強して(以下 「再補強試験体」と記す)交番載荷試験を行うことによ り、再補強試験体の挙動や変形性能等について検討した ものである。

2. 補強試験体の概要

試験体は、既設鉄道 RC ラーメン高架橋柱の断面寸法 を 5/8 に縮小したもの(断面寸法は 50×50cm)で、補 強が施されない場合にはせん断破壊するもの(曲げせん 断耐力比 0.68)である²⁾。

図-2 試験体の配筋と補強詳細図(単位 mm)

試験体名		C-1 C-2 C-3			
柱形状		断面寸法 50×50cm 有効高さ <i>d</i> =44cm せん断スパン <i>a</i> =150cm せん断スパン比 <i>a</i> / <i>d</i> =3.4			
鉄	軸方向鉄筋	D22	(SD295)	20本	
筋	帯鉄筋	φ 6mm (SR235) @94mm 帯鉄筋比 0.12%			
コンクリート		設計基準強度 21 N/mm ²			
	鋼より線	亜鉛めっき鋼より線 2号(a)1種A級			
補強		φ 9.6mm @100mm	φ 6.9mm @50mm	φ 5.4mm @50mm	
部材	補強筋比	0.23%		0.14%	
r. ,	セグメント	設計基	N/mm ² m		

表-1に補強試験体の種類と諸元、図-2に試験体の 配筋と補強詳細図、図-3にセグメント詳細図を示す。 交番載荷試験は、試験体頭部に一定の軸力(死荷重によ り既設鉄道 RC ラーメン高架橋柱が受ける圧縮応力度に 相当する値:1N/mm²)を加えた状態で正負交番の水平 力を加えて行った。荷重ステップは、軸方向鉄筋の降伏 で判定する降伏変位Δyを基準に、変位制御で降伏変位 の偶数倍の変位を各3サイクルずつ載荷した。以下、載 荷点の水平荷重は「荷重」と記し、載荷点の水平変位は 「変位」と記す。

いずれの補強試験体も図-4に示すように、優れた 変形性能を示し、履歴曲線は吸収エネルギーの大きい形 状を示した。いずれも柱下端の軸方向鉄筋の座屈に伴う かぶりコンクリートのはらみ出しや、これによる最下段 のセグメントのはらみ出しがあり、柱下端のコンクリー

トが剥落して曲げ破壊した。軸方向鉄筋は、柱基部にお いて座屈したが破断はしなかった。荷重-変位性状およ び損傷状況については、いずれの補強試験体も大差のな いものであった²⁾。

3. 再補強試験体の概要

交番載荷試験が完了した補強試験体のその後の補修方 法・補修材料、再補強方法および試験概要を表-2に示 す。

C-1 は柱基部の座屈部および柱上部からはつり出した 軸方向鉄筋の引張試験を行った。

C-2 は、損傷を受けてブロック状になったものを含む 柱基部 1D (D:柱断面高さ)区間のコンクリートを、 電動ピックおよび人力で全て取り除き、軸方向鉄筋は整 形せずに座屈した形状のまま使用した。また、帯鉄筋も 取り替えずに所定の位置に結束線で緊結して再使用した。 この状態で、型枠を設置してコンクリートを打設するこ とにより断面修復を行った。その際、柱基部 1D より上 のひび割れ箇所は無補修とした。補修後、APAT 工法に より再補強し、再補強試験体 C-2-R として交番載荷試験 を行った。

C-3 は、柱基部から約 45cm 区間のコンクリートのう ち、損傷を受けてブロック状になったものを人力で丁寧 に取り除いた。残ったコンクリート形状は、せん断ひび 割れに沿った角錐状のものとなった。軸方向鉄筋、帯鉄 筋は C-2 同様の処置とした。断面修復はポリマーセメン トモルタルで行った。柱基部約 45cm より上部に存在す る幅 0.2mm 以上のひび割れには、エポキシ樹脂を注入 した。補修後 APAT 工法により再補強し、再補強試験体

表-2 再補強試験体の概要

試験体名	C-2	C-2-R	C-2-R /C-2	C-3	C-3-R	C-3-R /C-3
降伏変位 δy (mm)	8.3	15.0^{*1}	1.81	8.5	11.4^{*1}	1.34
降伏荷重 (kN)	311	328	1.05	326	340	1.04
初期剛性 ^{*2} (kN/mm)	37.5	21.9	0.58	38.4	29.7	0.77
最大荷重時変位 (mm)	83.3	66.7	0.80	85.2	68.2	0.80
最大荷重 (kN)	387	431	1.11	388	470	1.21
終局変位 δu (mm)	104.3	95.6	0.92	99.1	92.9	0.94
じん性率 δu/δy	12.6	6.4	—	11.7	8.1	—

*1 再補強試験体の降伏変位:軸方向鉄筋のひずみが、C-1 の柱基部軸方向鉄筋の材料試験から得られた 0.2% 耐力を弾性係数で除した値に達した時点

*2 初期剛性:荷重-変位曲線の降伏変位における割線勾配

C-3-Rとして交番載荷試験を行った。

交番載荷試験後、C-2-R、C-3-R は、C-1 同様に、柱 基部の座屈部および柱上部から軸方向鉄筋をはつり出し、 引張試験を行った。

4. 再補強試験体の試験結果

4.1 交番載荷試験結果

再補強試験体の交番載荷試験は、再補強前後の比較 を容易にするため、補強試験体の降伏変位 Δ_yを用いて 変位制御により補強試験体と同様の方法で行った。

なお、載荷を制御した降伏変位は Δ, と表し、変形

性能の検討に用いた降伏変位は、再補強試験体の軸方向 鉄筋の 0.2% 耐力を弾性係数で除したひずみに達した時 点を降伏変位として再定義したため、δ_yとして表した。 a. 荷重と変位の関係

図-5には、荷重-変位曲線の一例として C-2、C-2-R のものを示す。C-2-R、C-3-R いずれも、C-2、C-3 と 同様に優れた変形性能を示し、履歴曲線は吸収エネル ギーの大きい形状を示した。

表-3に交番載荷試験結果を示す。再補強試験体の降 伏変位は、補強試験体に比べ大きく、C-3-R に比べ C-2-R の方が大きい。これを初期剛性(荷重-変位曲線の 降伏変位における割線勾配)で見ると、再補強試験体の

(b) C-3-R (最終 12 Δy)

図-6 損傷状況

初期剛性は、補強試験体より低下しており、両者の比を とった初期剛性比(再補強試験体/補強試験体)からわ かるように C-3-R に比べ C-2-R の方が大きく低下した。 なお、C-2-R と C-3-R の降伏は、軸方向鉄筋のひずみが、 C-1 の柱基部軸方向鉄筋の材料試験から得られた 0.2% 耐力を弾性係数で除した値に達した時点とした。

また、最大荷重(繰返し荷重により耐力低下が顕著に ならない最大水平変位を示す時点の荷重)⁵⁾は、再補強 試験体の方が補強試験体より大きく、C-2-Rに比べ C-3-Rの方が大きくなった。一方、最大荷重時変位は、再 補強試験体の方が小さくなり、C-2-RとC-3-Rはほぼ同 等で、最大荷重時変位比(再補強試験体/補強試験体) も同程度となった。

終局変位は、荷重-変位曲線の包絡線で、水平荷重が 降伏荷重を下回らない最大の水平変位とした⁵⁾。この終 局変位は、再補強試験体の方が補強試験体より小さく、 C-2-R と C-3-R はほぼ同等で、終局変位比(再補強試験 体/補強試験体)も同程度となった。

再補強試験体の最大荷重が補強試験体より大きくなっ たのは、再補強試験体断面修復部のコンクリートおよび ポリマーセメントモルタル強度が、補強試験体のコンク リート強度より大きいことによるものと考えられる。C-2-R に比べ C-3-R の最大荷重が大きくなったのは、再補 強試験体断面修復部のコンクリートおよびポリマーセメ ントモルタル強度の差と考えられる。

b. 損傷状況

C-2-R、C-3-R は、いずれも $6\Delta_y$ で柱基部のコンク リートが圧壊し、 $10\Delta_y$ で下部のセグメントのはらみ出 しが大きくなり、 $12\Delta_y$ で軸方向鉄筋の一部が破断して

図-7 健全部の平均破断伸びを基準とした 軸方向鉄筋引張試験結果

水平荷重が大きく低下した。

図-6に交番載荷試験終了時の損傷状況の写真とひ び割れスケッチ展開図を C-3、C-3-R について示す。い ずれの試験体も、載荷面に平行な面にはコンクリートの はらみ出しによる縦方向のひび割れがあり、載荷面に直 角な面にはせん断ひび割れが発生した。

座屈変位の測定を交番載荷試験終了後に行った。軸方 向鉄筋の座屈状況は、いずれの試験体もほぼ同様であり、 座屈長は二度にわたる交番載荷試験でほぼ同一、座屈変 位は増加した。補強試験体での座屈変位/座屈長は0.06 程度、再補強試験体では 0.09 程度であった。なお、柱 基部最外縁の軸方向鉄筋は C-2-R で 7 本 、C-3-R で 6 本が柱基部で破断していた。

4.2 鉄筋引張試験

図-7に軸方向鉄筋引張試験で得られた応力-ひずみ 曲線を示す。図は、C-1 健全部(柱上部載荷点付近)の 平均破断伸びの値を基準として、C-1、C-2-R、C-3-Rの 柱基部最外縁の座屈した軸方向鉄筋の応力-ひずみ関係 を表示したものである。柱基部の鉄筋は、いずれも明瞭 な降伏点を示さなかった。また、弾性係数は、一部に座 屈による初期不整のため見かけ上小さいものもあるが、 健全部とほぼ同等であった。C-1 最外縁の軸方向鉄筋の 破断伸びは、柱基部で平均 9.6%、健全部で 17.0%であ り、柱基部は健全部に比べひずみで 7.4%減少している。 C-2-R、C-3-R の軸方向鉄筋の破断伸びの減少量は、ひ ずみで 8.1~10.9%であったと想定できる。

5. 再補強柱の変形性能評価

5.1 変形性能評価式

APAT工法の変形性能評価式¹⁾を用いて再補強試験体の 変形性能を評価することを試みた。変形性能評価式は、 設計標準⁶⁾および渡邉らの研究⁵⁾に基づき、柱の曲げ 耐力と変形との関係において検討を加え、塑性ヒンジ部 の曲げ変形による変位の算定に、セグメントや鋼より線 による拘束効果を見込んだものである。

設計標準^のでは、鉄筋コンクリート部材における曲 げ破壊モードの棒部材の部材端部の曲げモーメントMと、 変位 δ (=せん断スパン L_a ×部材角 θ)の関係を図-8 のように与えている。Y点は、軸方向鉄筋が引張降伏す るときの曲げモーメントMyとδyで与えられる点である。 δ_yは、軸方向鉄筋降伏時におけるく体変形による変位 (以下「く体曲げ変位」と記す) とベース内からの軸方 向鉄筋の抜出しによる回転変位(以下「抜出し変位」と 記す)の和で算定する^の。M点は、コンクリートの最外 縁に生じる圧縮ひずみがε。= 0.0035となるときの曲げ モーメント M_m と δ_m で与えられる点である。 δ_m は、M点における塑性ヒンジ部以外のく体曲げ変位と塑性ヒン ジ部の曲げ変形による変位で、セグメントや鋼より線に よる拘束効果を考慮したもの(以下「塑性ヒンジ変位」 と記す)と抜出し変位の和で算定する¹⁾。N点は、降伏 荷重を維持できる最大変位と定義される。曲げモーメン ト M_n は M_v で評価する。 δ_n は、M点と同様に、N点に おける塑性ヒンジ部以外のく体曲げ変位と塑性ヒンジ変 位と抜出し変位の和で算定する。

5.2 変形性能評価

図には示さなかったが、Y 点および M 点の荷重は、 計算値と実験値が対応した。これは、断面修復時に軸方 向鉄筋が大きく座屈していても、再補強試験体の曲げ耐 力に与える影響が少ないことを示している。

図-9には、Y 点変位の実験値の内訳を示す。図では 変位を、抜出し変位とく体曲げ変位(断面修復部)およ びく体曲げ変位(断面修復部以外)に区分して示した。 抜出し変位は、く体の変形を3次曲線で近似し、柱基部 での接線から算定した。く体曲げ変位(断面修復部)は、 いずれの試験体も柱基部から45cm区間として変形性能 評価式の方法を用いて算定した。く体曲げ変位(断面修 復部以外)は、Y点変位の実験値から抜出し変位とく体 曲げ変位(断面修復部)を差し引いて算定した。C-2、 C-3には断面修復部は無いが、比較のために45cm区間 の変位を断面修復部として示した。

抜出し変位およびく体曲げ変位(断面修復部以外)の 実験値について、C-2-R/C-2のようにそれぞれの比を とることで、抜出し変位およびく体曲げ変位(断面修復 部以外)の増加率を算定して表-4に示す。抜出し変位 の増加は、当初の交番載荷試験の影響でベース内の軸方 向鉄筋の付着が弱くなった状態のまま再補強試験体の交 番載荷試験を行ったためと考えられる。再補強試験体の交 番載荷試験を行ったためと考えられる。再補強試験体の 抜出し変位の増加率は、表-4に示したように、C-2、 C-3に比べそれぞれ1.3倍、1.5倍の値であり、変形性能 評価式を用いて算定した C-2、C-3のY点からN点への 抜出し変位の計算値の増加率約1.5とほぼ同等であった。 したがって、再補強試験体のY点の抜出し変位の評価 においては、補強試験体のN点の抜出し変位の評価式 を用いてもよいと考えられる。

また、図-9より、ひび割れ箇所の補修が施されてい ない C-2-R のく体曲げ変位(断面修復部以外)が突出し て大きいことがわかる。Y 点のく体曲げ変位(断面修復 部以外)の増加は、ひび割れ注入の補修を施しても変形 は増加し、注入を施さないは場合さらに大きく変形する

ことを示している。

図-10 には、M 点変位の実験値の内訳を示す。ここで、抜出し変位の実験値は、C-2-R、C-3-R の Y 点の抜出し変位の実験値で評価した。 M 点の抜出し変位は、 Y 点の抜出し変位より増加すると考えられるが、変形性 能評価式において、M 点の全体変位に占める抜出し変 位の割合は約4%前後と小さいことから、Y 点の抜け出 し変位と同程度と見なしても影響は小さいと考えた。

図-10 のく体曲げ変位の実験値は、く体曲げ変位を 断面修復部と断面修復部以外に区分して示した。く体曲 げ変位(断面修復部)は、いずれの試験体も(柱基部か ら 45cm-塑性ヒンジ長)区間として変形性能評価式の 方法を用いて算定し、く体曲げ変位(断面修復部以外) は変形性能評価式の方法を用いて算定した。ただし、C-2-R、C-3-R の断面修復部以外のく体曲げ変位は、表-4に示した Y 点で得られたく体曲げ変位増加率を乗じ て算定した。C-2、C-3 には断面修復部は無いが、比較 のために(柱基部から 45cm-塑性ヒンジ長)区間の変 位を断面修復部として示した。

また、塑性ヒンジ変位の実験値は、M 点変位の実験 値から上述した抜出し変位の実験値およびく体曲げ変位 の実験値を差し引いて算定した。

同様の方法で、N点変位実験値の内訳についても算定した。

実験での塑性ヒンジ変位について C-2-R/C-2 のよう にそれぞれの比をとることで、M 点、N 点での塑性ヒ ンジ変位低下率を算定して表-5に示す。M 点の塑性 ヒンジ変位低下率は、座屈した軸方向鉄筋の無整形の影 響によるものと考えられ、N 点の塑性ヒンジ変位低下率 は、座屈した軸方向鉄筋の無整形の影響および応力履歴 による伸び余力減少の影響によるものと考えられる。

前項で示した変形性能評価式において、再補強試験体の抜出し変位を補強試験体のN点の抜出し変位の値とし、さらに、表-4、5で得られた補正等を考慮して算定した再補強試験体のY点、M点、N点変位の計算値

(補正後)と実験値の比較を図-11 に示す。図より、 計算値(補正後)は実験値を良好に表現できるように補 正できたことがわかる。

6. まとめ

耐震補強を行った RC ラーメン高架橋柱が大規模地震 の影響を受けた場合の復旧に関する知見の蓄積を目的に、 曲げ破壊した補強試験体に対し、補修方法を変えた再補 強試験体を作成し正負交番載荷試験を行った。その結果、 本実験の範囲において、以下のことが明らかになった。

i. 軸方向鉄筋が座屈した状態のままで補修を行い再 度耐震補強した場合でも、補強試験体と同様に優れ た変形性能を示し、履歴曲線は吸収エネルギーの大 きい形状を示し、変形性能は、補強試験体の交番載 荷試験結果に比べ終局変位比で 0.93 程度を確保す ることができ、補修方法による終局変位の違いは顕 著ではない

- ii. 再補強試験体の初期剛性は、補修法の違いが顕著 に現れた。ひび割れ箇所に注入を施さない試験体の 初期剛性は、補強試験体の初期剛性の 58%程度に 低下するが、ひび割れ箇所に注入を施した試験体の 初期剛性は 77%の低下にとどまった
- iii. 断面修復時に軸方向鉄筋が、座屈変位/座屈長で
 0.06 程度と大きく座屈していても、再補強試験体の
 曲げ耐力に与える影響は少ない
- iv. 交番載荷試験による損傷を受けた軸方向鉄筋の引 張試験結果から、鉄筋の伸び能力は、当初の交番載 荷試験で終局変位に至るまでにひずみで 7.4%減少 し、同様に再補強後の交番載荷試験で 8.1~10.9% 減少した
- v. 再補強試験体の変形性能は、既提案の APAT 工法の変形性能評価式に、軸方向鉄筋のベース内での付着劣化の影響およびく体のひび割れによるく体曲げ変位増加の影響、さらには、軸方向鉄筋の座屈と応力履歴の影響等を考慮に入れれば、ほぼ妥当に評価することができる可能性を示した

なお、本研究は西日本旅客鉄道㈱、大鉄工業㈱と㈱奥 村組の共同研究によるものである。

【参考文献】

- 松田好史、中村敏晴、宮川豊章、「コンクリートセグ メントと鋼より線を用いた既設 RC 柱の耐震補強」、 土木学会論文集、No.763/VI-63、pp.185-203、2004
- 2) 松田好史、中村敏晴、北後征雄、櫟田正人、宮川豊 章、「改良型セグメントと鋼より線を用いた既設 RC 柱の耐震補強効果」、コンクリート構造物の補修、補 強、アップグレードシンポジウム論文報告集、第5 巻、pp.85-92、2005
- 3)石橋忠良、津吉 毅、小林 薫、小林将志、「大変形 正負交番載荷を受ける RC 柱の損傷状況及び補修効 果に関する実験的研究」、土木学会論文集、 No.648/V-47、pp.55-69、2000
- 4) 稲熊弘、関 雅樹、「大損傷を受けた RC 柱のエポキ シ樹脂モルタルによる補修効果確認実験」、土木学会 第 58 回年次学術講演会、V-344、pp.687-688、2003
- 5) 渡邊忠朋、谷村幸裕、瀧口将志、佐藤 勉、「鉄筋コ ンクリート部材の損傷状況を考慮した変形性能算定 手法」、土木学会論文集、No.683/V-52、pp.31-45、 2001
- 6) 国土交通省鉄道局監修、鉄道総合技術研究所編、「鉄 道構造物等設計標準・同解説 コンクリート構造物」、 丸善、2004

A P A T 工法で耐震補強した柱の断面寸法が 変形性能に与える影響

Deformation Affects the Performance of the Section Size

of the Retrofitted Column

中村敏晴* 三澤孝史* 川口昌平* 石井敏之*

要旨

鉄道鉄筋コンクリートラーメン高架橋柱の耐震補強工法として APAT 工法を開発し、実用化してきた。こ の APAT 工法で耐震補強した柱の変形性能を算定する手法は、縮小試験体の交番載荷試験結果を使用して提 案した。しかし、曲げ破壊が生じる柱には寸法効果があり、柱の変形性能は試験体が大きくなると低下する との指摘がある。そこで、APAT 工法で補強した柱の実大試験体を作成して交番載荷試験を行い、断面寸法 が変形性能に与える影響について検討した。

キーワード:鉄筋コンクリートラーメン高架橋、交番載荷試験、耐震補強、変形性能、寸法効果

1. まえがき

著者らは、これまで既設の鉄道鉄筋コンクリート(以 下「RC」と記す)ラーメン高架橋柱の耐震補強工法と して、「APAT 工法」(Aseismatic reinforcements by Precastblocks and Additional Tendons、以下「APAT 工法」 と記す)¹⁾を開発してきた。これは、矩形断面の柱の側 面に、ポリマーセメントモルタルを介し、櫛形のプレ キャストコンクリートブロック(以下「セグメント」と 記す)を張り付け、その外周にスパイラル状に加工した 亜鉛めっき鋼より線(以下「鋼より線」と記す)を巻立 て補強する工法である。(図-1参照)

APAT 工法の利点としては、

- i. 柱の損傷状況を柱四隅のセグメントの無い部分か ら直接目視確認でき、セグメント表面に生じるひび 割れを介しても柱の損傷状況を推定できる^{1),2)}こと から、復旧時の臨時点検を迅速かつ容易に行える
- ii. 鋼板巻立て工法と同等以上の変形性能を有し、人力で容易に施工できる
- iii. セグメントと鋼より線が柱コンクリートを効果的 に拘束することにより、せん断耐力の向上と優れた 変形性能を発揮する

などが挙げられる。

APAT 工法の変形性能評価式として、耐震設計標準³⁾ を準用して鋼より線とセグメントの拘束効果を見込んだ 式を 5/8 の縮小試験体の交番載荷試験に基づき提案して いる¹⁾。曲げ破壊する柱の寸法効果に関する研究は少な いが、奥らの研究⁴⁾によれば、曲げ破壊する T 形梁に対 既設R C柱

図-1 APAT 工法概念図

する寸法の影響は、耐力に関しては見られないが、変形 性能は試験体が大きくなると劣るとの結果が示されてい る。また、星限らの研究⁵によれば、曲げ破壊する柱の 荷重-変位曲線は試験体の大小にかかわらず比較的よく 一致したとある。さらに、文献 6)によると、鉄道 RC ラーメン高架橋の柱を鋼板巻立て工法で耐震補強した場 合の塑性ヒンジ回転角は 600/柱幅(mm)に比例すると している。そこで、APAT 工法で耐震補強した実大試験 体の交番載荷試験を行い、断面寸法が変形性能に与える 影響について検討した。

2. 試験体の諸元

補強対象とする既設 RC 柱は、昭和 54 年制定の「耐

*技術研究所

震設計指針(案)解説」⁷以前の基準に基づいて設計さ れた RC ラーメン高架橋柱(断面寸法 80×80cm)とし た。この試験体は、せん断補強がなされない場合、設計 に用いる材料強度で安全係数を考慮し、コンクリート設 計標準⁸⁾に準拠して算定したせん断耐力比が 0.4 となり、 せん断破壊するものである。**表-1**に試験体の諸元、図 -2に試験体の配筋と補強詳細図、図-3にセグメント 標準図を示す。

補強は、**表-1**に示すように、設計に用いる材料強 度で安全係数を考慮し、コンクリート設計標準⁸⁾に準拠 して算定したせん断耐力比が 1.0 となる量の鋼より線 φ 12.0mm @100mm でセグメントを巻き立てるものである。

3. 載荷方法

載荷は、写真-1に示す載荷装置を用い、試験体頭部 に一定の軸力(上部工の死荷重と活荷重に相当する圧縮 応力度 3.7N/mm²)を加えた状態で正負交番の水平力を 加えるものである。

荷重ステップは、軸方向鉄筋が降伏する時点(1δy)

表一			1 試験体の諸元
補強方法			APAT 工法で補強
柱形状		沃	断面寸法 80×80cm 有効高さ <i>d</i> =74cm せん断スパン <i>a</i> =260cm せん断スパン比 <i>a</i> / <i>d</i> =3.51
金生存室	輫	i方向鉄筋	D32(SD345) 20本 引張鉄筋比 0.8%
或大用力	帯鉄筋		φ9(SR235)@150mm 帯鉄筋比 0.106%
コンク 柱		柱	目標強度 24 N/mm ² 粗骨材の最大寸法 20mm
リート		ベース	目標強度 30 N/mm ² 粗骨材の最大寸法 20mm
補強	鋼より線 セグメント		亜鉛めっき鋼より線 2号(a)l種A級 φ12.0mm@100mm 補強筋比 0.22%
部材			幅 60cm、標準高さ 50cm 中心部厚さ 10cm 設計基準強度 40 N/mm ² 最大粗骨材寸法 20mm
柱下站	譕	補強区間	50mm
軸方向圧縮応力度		縮応力度	3.7 N/mm ²

写真-1 載荷装置

までは荷重制御で載荷、以降の載荷は変位制御とし、降 伏変位の偶数倍の変位を各3サイクルずつ載荷した。以 下、水平ジャッキを押し出す方向の水平荷重・水平変位 を「+」で、水平ジャッキを引き戻す方向の水平荷重・ 水平変位を「-」として記す。また、「荷重」および 「変位」は水平荷重載荷点の水平荷重、水平変位を意味 するものとする。

4. 交番載荷試験結果

4.1 荷重と変位の関係

交番載荷試験結果一覧表を表-2、荷重-変位曲線を 図-4に示す。なお、荷重は軸力による偏心曲げモーメ

ントの影響を荷重に換算し補正した。試験体は、最大荷 重時変位 117.7mm、終局変位 178.0mm の変形性能を示 し、その荷重-変位性状は、降伏後水平荷重がほぼ一定 のまま変形が増大し、履歴形状は吸収エネルギーの大き い安定した形を示した。繰返し荷重により耐力低下が顕 著にならない最大の変位時で定義される最大荷重時⁹の 6δ_ν以降は、柱下端から 0.5D (400mm 、D: 柱断面高 さ)区間の軸方向鉄筋の座屈、かぶりコンクリートのは らみ出しに伴う最下段のセグメントのはらみ出しがあり、 柱下端から約 0.5D (400mm)区間のコンクリートが剥 落して曲げ破壊した。10 δ_yでは耐力の低下が顕著にな り、7本の軸方向鉄筋が破断した。

4.2 5/8 縮小試験体との比較

APAT 工法の変形性能算定式を検討した文献 1) に示

される 5/8 縮小試験体は、本報告の実大試験体を縮小し た試験体ではない。したがって、引張鉄筋比等が異なる ため縮小試験体と実大試験体を比較すべきではないが、 相違点があることを認識した上で、文献 1) に示される 断面寸法 500×500mmの縮小試験体 AP-3 と比較した。

図-5に、実大試験体と縮小試験体の荷重-変位曲線の比較を示す。両試験体は大きさが異なるので、荷重 は降伏荷重で正規化し、変位は部材角で示した。両試験 体の履歴性状には大きな違いは認められなかった。変形 性能は、縮小試験体に比べ実大試験体の方が僅かではあ るが低下した。

図-6に、実大試験体と縮小試験体の損傷状況の比較 を示す。両試験体のせん断ひび割れ状況や曲げひび割れ 状況には大きな違いは認められなかった。しかし、縮小 試験体の軸方向鉄筋は破断しなかったが、実大試験体の 軸方向鉄筋は破断した。軸方向鉄筋の破断伸びは、実大 試験体が 20.6%、縮小試験体が 19.5%とほぼ同等の値で あった。実大試験体の方が縮小試験体に比べ交番載荷試 験終了後に測定した座屈変位/座屈長の値が大きいため に軸方向鉄筋の破断が生じたとも考えられるが、縮小試 験体の座屈変位/座屈長の値は測定しなかったため断定 はできない。ちなみに、実大試験体の座屈変位/座屈長 の値は 0.16~0.2 であり、縮小試験体 AP-3 より薄型の セグメントを用いた別の 5/8 縮小試験体の座屈変位/座 屈長の値は、0.05~0.06 であった。

また、セグメントに表れるひび割れは、せん断ひび割 れ、曲げひび割れ、ともに実大試験体より縮小試験体の 方が多いが、これは、セグメントの厚さが一因と考える ことができる。

5. 変形性能

前章に示したように、実大試験体は縮小試験体より変 形性能が僅かではあるが低下する結果となった。実大試 験体と縮小試験体で大きく異なる点は、断面寸法、引張 鉄筋比、軸方向圧縮応力度である。

軸方向圧縮応力度に関しては、縮小試験体で同一試験 体、同一補強方法で軸方向圧縮応力度のみを 1.0 N/mm² と 7.0N/mm² と異なるものにして交番載荷試験を実施し た結果によると、終局変位はそれぞれ 119.9mm、 117.2mm とほぼ同一の変形性能が得られた。また、 APAT 工法と補強工法が異なるが、同一の試験体で軸方 向圧縮応力度を 1.0N/mm² と 4.0N/mm² とした交番載荷 試験結果でも、終局変位はそれぞれ 72mm、70mm とほ ぼ同一の変形性能が得られた¹⁰。これにより、1.0~ 7.0N/mm² 程度の軸方向圧縮応力度の範囲では軸方向圧 縮応力度が変形性能に与える影響は小さいことがわかる。

鉄道 RC ラーメン高架橋柱を対象とした APAT 工法の 変形性能評価式として、耐震設計標準³⁾を準用して鋼よ

り線とセグメントの拘束効果を見込んだ式を縮小試験体 の載荷試験に基づき提案している¹⁾。APAT 工法の変形 性能評価式は、図-7に示す、Y 点荷重、M 点荷重、Y 点変位、N 点変位には、耐震設計標準³⁾を準用し、M 点 変位の算定には、帯鉄筋と鋼より線からなる横拘束筋の 関数で示される塑性ヒンジの回転角に、セグメントと鋼 より線による拘束効果を見込んだ式を用いるものである。

以下に、Y 点、M 点、N 点の評価法について示す。 以下の評価法において、セグメントは考慮しないものと する。

Y 点は、軸方向鉄筋が引張降伏するときの曲げモーメ ント M_y と変位 δ_y で与えられる点である。曲げモーメ ント M_y は、鉄筋コンクリート断面として、平面保持を 仮定してコンクリートと鉄筋の応力ひずみ関係にコンク リート設計標準⁸⁾ に示されるものを用いて算定する。 δ_y は式(1)で算定する³⁾。

$$\delta_y = \delta_{y0} + \delta_{y1} \tag{1}$$

ここに、δ_{y0}:軸方向鉄筋降伏時におけるく体変形に よる変位(以下「く体曲げ変位」と記 す)

δ_{y1}:軸方向鉄筋降伏時におけるベース内からの軸方向鉄筋の抜出しによる回転変位(以下「抜出し変位」と記す)

M 点は、コンクリートの最外縁に生じる圧縮ひずみ が $\epsilon_c = 0.0035$ となるときの曲げモーメント M_m と変位 δ_m で与えられる点である。曲げモーメント M_m は、鉄 筋コンクリート断面として M_y と同様の方法で算定する。 δ_m は、式(2)で算定する¹⁾。

$$\delta_m = \delta_{mb} + \delta_{mp} + \delta_{m1} \tag{2}$$

- ここに、*δ_{mb}*: M 点におけるく体変形のうち塑性ヒンジ部以外のく体曲げ変位
 - δmp: M 点におけるく体変形のうち塑性ヒンジ部の曲げ変形による変位で、セグメントや亜鉛めっき鋼より線による拘束効果を考慮したもの(以下「塑性ヒンジ変位」と記す)

図-8 横拘束筋比と塑性ヒンジ回転角

$$\delta_{mp} = \theta_{pm} \cdot (L_a - L_p / 2)$$

ここに、 L_a : せん断スパン
 L_p : 等価塑性ヒンジ長
 $L_p = 0.5d + 0.05L_a$
 d : 断面の有効高さ

 $\theta_{pm}: 塑性ヒンジの回転角$

$$\theta_{pm} = \frac{\theta_{pm}'}{0.79 \cdot p_t + 0.153} \tag{4}$$

(3)

 $\theta_{pm} = 0.021 (k_{w0} \cdot p_w + k_{ws} \cdot p_s) + 0.013 + \alpha \quad (5)$

ただし、
$$\theta_{pm}' \le 0.07$$
 (6)

$$0.79 \cdot p_t + 0.153 \ge 0.78 \tag{7}$$

- kw0 : 帯鉄筋強度を考慮する係数
 kw0 = fwy / 390
- f_{wy} :帯鉄筋の引張降伏強度 (N/mm²)
- *pw* : 帯鉄筋比(%)
- *p*_t :引張鉄筋比(%)
- k_{ws} : 鋼より線強度を考慮する係数
 k_{ws} = f_{sy} / 390
- *fsy* : 鋼より線の引張降伏強度 (N/mm²)
- ps::鋼より線比(せん断補強筋比)
- α : セグメントと鋼より線による拘束効果
 を補正する係数
- δ_{m1}: M 点におけるベース内からの軸方向
 鉄筋の抜出しによる回転変位

N 点は、降伏荷重を維持できる最大変位と定義される。曲げモーメント M_n は M_y で評価する。 δ_n は、式(8)で算定する。

$$\delta_n = \delta_{nb} + \delta_{np} + \delta_{n1} \tag{8}$$

ここに、δ_{nb} : N 点におけるく体変形のうち塑性ヒンジ部以外のく体曲げ変位

δ_{np}: N 点における塑性ヒンジ変位
 δ_{n1}: N 点におけるベース内からの軸方向鉄
 筋抜出しによる回転変位、δ_{m1}で評価

なお、Y 点は交番載荷試験結果の降伏時、M 点は最 大荷重時、N 点は終局時に相当する。

ここでは、この変形性能評価式を用いて、断面寸法が 変形性能に与える影響について検討した。

M 点塑性ヒンジ回転角の実験値は、図-8に示すように、既往実験値(500mm角柱)で示す縮小試験体と異なり、実大試験体は式(5)との対応がよくないことがわかる。なお、図-8の M 点塑性ヒンジ回転角の実験値は、M 点変位の実験値から M 点の軸方向鉄筋の抜出し変位の計算値と塑性ヒンジ部以外のく体曲げ変位の計算値を差し引き、式(4)の引張鉄筋比の影響の項 0.79・ p_t +0.153 を考慮して算定したものである。

図-9に、APAT 工法の変形性能評価式による計算値 と実験値の比較(荷重)を示し、図-10に計算値と実 験値の比較(変位)を示す。Y 点荷重、Y 点変位、M 点荷重は、いずれも計算値と実験値がほぼ対応している。 一方、M 点変位、N 点変位は、上述したように、変形 の 90%程度を占める M 点塑性ヒンジ回転角の評価式が 対応しないため、計算値の方が実験値より大きくなった と考えられる。

M 点塑性ヒンジ回転角の評価式が実大試験体で実験 値と対応しなくなるのは、断面寸法の影響と考えられる。 文献 6) では、鋼板巻立て補強工法の柱の変形性能につ いて、M 点の塑性ヒンジの回転角は 600/B (B:柱幅、 単位 mm) に比例するとしている。APAT 工法の場合 500mm の試験体で塑性ヒンジ回転角の評価式を検討し たので、これを考慮すると (500/600)・600/B より 500/B となる。図-8には M 点塑性ヒンジ回転角に 500/B を乗じて B=800 として算定したラインも示した。 これより、M 点塑性ヒンジ回転角の評価式に 500/B を 乗じて断面寸法の影響を考慮すると、M 点の塑性ヒン ジ回転角を評価できることがわかる。

図-10 には、M 点塑性ヒンジ回転角に 500/B を乗じ て計算値を補正した値も示した。これより、M 点塑性 ヒンジ回転角の評価式に 500/B を乗じて断面寸法の影響 を考慮すると、M 点変位および N 点変位も実験値と対 応することがわかる。

6. まとめ

断面寸法が変形性能に与える影響について確認するこ とを目的に行った実大試験体の交番載荷試験結果より以 下のことが明らかになった。

- i. 本工法で補強された実大試験体は、優れた変形性 能を示し、曲げ破壊した
- ii.実大試験体と縮小試験体を比較すると、荷重-変 位曲線において履歴性状に大きな違いは認められず、 実大試験体の変形性能は、縮小試験体に比べ僅かで はあるが低下する
- iii. 実大試験体の変形性能は、本工法の変形性能評価
 式に、寸法効果の影響を考慮することで適切に評価
 できることを確認した
- iv. 実大試験体における本工法の損傷状況は、縮小試 験体と同様であることを確認した

なお、本研究は(財)鉄道総合技術研究所の御指導 の下で実施したものである。

【参考文献】

- 松田好史、中村敏晴、宮川豊章、「コンクリートセグ メントと鋼より線を用いた既設 RC 柱の耐震補強」、 土木学会論文集、No.763/VI-63、pp.185-203、2004
- 2) 松田好史、中村敏晴、北後征雄、櫟田正人、宮川豊 章、「改良型セグメントと鋼より線を用いた既設 RC 柱の耐震補強効果」、コンクリート構造物の補修、補 強、アップグレードシンポジウム論文報告集、第5 巻、pp.85-92、2005
- 運輸省鉄道局監修、鉄道総合技術研究所編、「鉄道構 造物等設計標準・同解説 耐震設計」、丸善、1999
- 4)奥 勝幸、藤井 栄、森田司郎、「鉄筋コンクリート
 T 形梁の寸法効果」、コンクリート工学年次論文報告
 集、pp. 675-680、1988
- 5) 星隈順一、運上茂樹、長屋和宏、「鉄筋コンクリート 橋脚の変形性能に及ぼす断面寸法の影響に関する研 究」、土木学会論文集、No.669/V-50、pp.215-232、 2001
- 6)鉄道総合技術研究所、「既存鉄道コンクリート高架橋 柱等の耐震補強設計・施工指針 鋼製パネル組立補 強編」、2006
- 7) 日本国有鉄道編、「耐震設計指針(案)解説」、1979.
- 8) 国土交通省鉄道局監修、鉄道総合技術研究所編、「鉄 道構造物等設計標準・同解説 コンクリート構造物」、 丸善、2004
- 9) 渡邊忠朋、谷村幸裕、瀧口将志、佐藤 勉、「鉄筋コ ンクリート部材の損傷状況を考慮した変形性能算定 手法」、土木学会論文集、No.683/V-52、pp.31-45、2001
- 10)鉄道総合技術研究所、「既存鉄道コンクリート高架 橋柱等の耐震補強設計・施工指針スパイラル筋巻立 工法編」、1996

UUライニングエ法の経年劣化調査と適用限界について

Investigation of Aging and Application Limit of the UU lining Method

西山宏一*石井敏之** 沼田 憲*津田晃宏***

要旨

構造物の劣化因子の遮断や摩耗防止、はく落防止、防水などを目的として、多くの構造物にUUライニン グ工法を適用してきた。現在、摩耗対策や防水対策での適用を検討する機会が増えてきており、今後も、そ のニーズは増加すると予想される。本工法は、平成 12 年2月より適用が開始された。これらの工法を適用 した構造物の現状を把握することがその性能や耐久性を評価する最も良い方法となるので、経過観察を実施 した。

また、実施されたUUライニング工法の性能確認試験結果から、湿潤環境における付着力の性能低下が確認されている。このことから、本研究では付着力の低下の把握を目的とした確認試験とともに改良を加えた素地調整材も組み込むことで、付着力の低下に対する対策も含めたUUライニングの適用性に関する確認試験を行った。本報では、その経過観察結果と試験結果について報告する。

キーワード:ウレアウレタン、耐摩耗、付着力、鋼製桁上フランジライニングシステム、床版防水

1. まえがき

近年コンクリート構造物の樹脂系補修材として従来 からよく用いられてきたエポキシ系だけでなく、多く の新素材が適用されるようになってきた。防水や防食 用ライニング材として適用されるようになったウレア ウレタン樹脂もその一つである。このウレアウレタン (以下、「UU」と表記)樹脂の優れた性能に着目し、防 水だけでなく、はく落防止、耐摩耗および防錆などの目 的でUUライニング工法を開発し、各種の対策として 適用してきた。UUライニング工法に使用するUU樹 脂は、約 20 年前にドイツで防水材料として開発され、 日本に導入されたものである¹⁾。

また、平成 12 年2月のUUライニング工法の適用開 始から約9年が経過しており、その施工実績は、平成 21 年3月現在で約 26,000m²となっている。UUライニ ング工法を適用してきた構造物の経過観察結果は、本工 法の妥当性や耐久性能の確認において有用である。

本報で述べる性能確認試験とは、過去に実施した性能 確認試験から、湿潤環境において付着力の低下が確認さ れたので、種々の施工条件下での6ヶ月間の付着性能の 確認を目的とした試験である。また、この試験では、付 着性能の低下に対する対策として、改良した素地調整材 も加えた。

本報では、今回実施したUUライニング工法を適用し た構造物の経過観察の結果と性能確認試験結果を報告す る。

2. UUライニング工法の概要

2.1 特長

UUライニング工法は、次の順序で施工される。図 -1に示すように、構造物に対して下地処理、必要に応 じて素地調整材を実施し、次にプライマーを塗布して2 液先端混合型の専用機を用いてUU樹脂を吹き付け、そ の後、耐候性塗料を塗布する。吹き付けは、材料タンク からギア式ポンプでスプレーガンに主剤と硬化剤の2液 を送り込み、スタティック方式で混合した後にエアーを 併用して行われる。

材料は、2液硬化型のUU樹脂であり、1級アミンも しくは、2級アミンを持つ化合物およびポリエーテルポ リオールの混合物と、イソシアネート類との反応により 生成するウレア結合とウレタン結合を併せ持ったポリ マーである。

*東日本支社環境技術部 **技術研究所 ***西日本支社環境技術部

工法の特長は、以下に示す通りである。

- i. ゲルタイムが数十秒と硬化速度が非常に速い
- ii.経時的な物性低下もほとんどなく耐久性に優れる
- iii. 耐酸性・耐アルカリ性など、耐薬品性に優れるiv. 耐摩耗性・耐衝撃性に優れる
- v.6mmのひび割れに追従する(塗膜厚2mm)
- vi.硬化反応が非常に速いため、低温域での施工が可 能である

2.2 施工実績

施工実績のうち、**表-1**に目的別の件数と施工数量を 示す。目的としては、防水が最も多く、はく落防止、耐 摩耗、防食(硫酸)の順となっている。ただし、近年、 構造物の管理者がはく落防止の要求性能を下げたため、 安価な他の工法との競合により、はく落防止への採用例 が少なくなっている。

目的	件数	数量(m²)
防水	29	11,414
はく落防止 中性化防止含む	26	6,739
耐摩耗	23	2,433
防食 硫酸(下水)	5	2,290
防食 塩害	1	1,484
防音	6	1,067
防食防錆	13	594
粗度係数	1	152
合 計	104	26,173

表一1 目的別施工実績

3. 経過観察

これまでの適用例のうちから、表-2に示すように使 用目的別に4~6年経過した4事例(写真-1~写真-4)を選定し、経過観察を実施した。各経過観察の結果 を表-3に示す。

表一2	観察車例
1X C	此ってモリリ

使用目的	施工箇所	経過年数	写真番号
耐摩耗	頭首工土砂吐水路	6年1ヶ月	写真-1
防水	鉄道線路を跨ぐ新設道路橋	4年5ヶ月	写真−2
はく落防止	鉄道線路を跨ぐ既設道路橋	5年2ヶ月	写真−3
防錆	鉄道鋼製桁の上フランジ まくら木の下	5年9ヶ月	写真−4

写真-1 頭首工土砂吐水路での事例

写真-2 新設跨線橋での事例

写真-3 既設跨線橋での事例

写真-4 フランジ上の塗膜の事例

表-3 経過観察の結果

	A 5 柱迴観宗の和木
使用目的	目的および観察状況
防水	新設高架橋の防水工として施工。車両走行によるせ ん断力が作用し、高い付着性能と耐久性が要求され る。舗装面の異常、床版下面への漏水はなく健全。
耐摩耗	水流に含まれる土砂による摩耗防止を目的として施 工。土砂による既設コンクリートの摩耗が激しく、摩 耗に対する高い耐久性が求めらる。塗膜のめくれ、 損傷もなく、現存していることを確認。
はく落防止	脆弱部除去後に断面修復を行った後、剥落防止を 目的として施工。膨れや剥離もなく健全。
防錆	防錆の難しいまくら木の下を線路閉鎖内に塗装。列 車走行にともなうまくら木の振動による塗膜の摩耗が 懸念されたが、摩耗、物性の変化等はほとんどなく 健全である。その後のまくら木交換でリベット頭部の 塗膜を損傷している。

4. 性能確認試験

4.1 目的

表-4は、平成 15 年に首都高速道路公団によって行われた「コンクリート補修材料・補強材料(平成 15 年度)実験」における、トンネル内のコンクリート片はく落防止材料の性能試験結果の一例である²⁰。トンネルが漏水等によって湿潤状態にあるときの付着力への影響を付着性試験によって評価したものである。

表-4 付着性試験結果

	付着力(MPa)			
	<u>養</u> 生力法			
		1.73		
標準(気中)	温度 20℃ 湿度 65% 28 日	2.04	1.98	
		2.18		
		1.56	1.44	
常温(半水没)	水温 20℃ 28 日	1.32		
		1.44		

建研式接着力試験器を用いて付着性試験を実施した。 養生方法が常温(半水没)の付着力試験では、UU樹脂 と素地調整材との界面で破断した。この結果は、塗布時 には乾燥しているが、施工前後で構造物が常に湿潤な環 境にある場合には付着力が小さいことを意味する。

このような湿潤な環境にある実構造物に適用する場合 には、UU樹脂の付着力が小さいのか、時間とともに低 下するのかを評価する必要があると考え、長期間(~半 年間)にわたる付着力の変化を確認するための実験を 行った。塗膜系材料において、付着力を定量的に評価で きる手法として、以下の項目が挙げられる。

i.付着力

- ü.押抜き力
- iii. ピーリング力(引き剥がし抵抗力)

付着力は、面全体での付着性能を評価している。押抜 き力は、負荷によって剥れた部分の外周の引き剥がし抵 抗力を計測できる。しかし、この2つは付着性能の面的 なばらつきが捕えにくい。対して、ピーリング力は幅 10mm のUU樹脂の引き剥がし抵抗力を測定するので、 付着の面的なばらつきを捕えやすい。

また、上記実験では、破断がUU樹脂と素地調整材の 界面で発生していたため、素地調整材を遮水層にするこ とにより、付着性能の低下を防止できると考えられる。 そこで、従来使用してきた材料の他に水中においても性 能劣化がないと考えられる材料も加えて、実験を実施し た。

4.2 供試体の製作

供試体の基盤材には、表-5に示す材料を用いた。押 抜き試験の基盤材は、図-2に示すようにあらかじめ中 心にφ100mmのコア削孔を行った。

供試体の製作は、これらの基盤材を 20℃の恒温水槽

に浸漬させて飽和状態にした後に、塗布面を乾燥させ図 -3に示すライニングを行った。試験ケースは、素地調 整材とプライマーの仕様および養生方法をパラメーター に、表-6の組み合わせとした。

表-5 基盤材規格

試験項目	基盤材規格				
付着性・ピーリング	JIS A 5371 コンクリート平板(300×300×60)				
押し抜き	JIS A 5334 U形用蓋(600×400×60)				

図-2押抜き試験用基盤詳細図

図-3 供試体構成図

表-6 試験ケース一覧表

試験項目	フ。ライマー	素地調整	CASE
		なし	P-1
	UUSプライマー (従来)	ポリマーセメントA	P-2
		ポリマーセメントB ^{※ 1}	P-3
接着性		ポリマ−セメントC ^{※ 2}	P-4
ょう よ し・ ヒ゜ーリンク゛		エホ。キシ樹脂モルタル ^{※1}	P-5
		エポキシ樹脂 ^{※1}	P-6
		ヒ゛ニルエステル ^{※2}	P-7
		なし ^{※1}	P-8
		なし	P-1
押抜き	UUSフライマー (従来)	ポリマ−セメントB ^{※ 1}	P-3
		エポキシ樹脂モルタル ^{※1}	P-5
*	(1:今回製作	※2:市販 無印:	標準仕様

4.3 付着性試験

作製した2体の供試体 を20℃の恒温室で気中 養生および恒温水槽で水 中養生した。養生期間7 日、28 日、90 日、180 日おいて、建研式接着力 試験器で付着力を計測し

写真-5 付着性試験状況

た。試験状況を**写真-5**、試験結果を図-4に示す。 試験結果は以下の通りである。

i.素地調整材にポリマーセメントを用いた標準型 (以下、P-2)、改良を加えたポリマーセメントを用 いた改良型(以下、P-3)、素地調整材に市販のポリ マーセメントを用いた改良型(以下、P-4)では、 水中養生の場合、付着力は養生期間の増加とともに 増加し、90日目で2.0MPa以上に達している

- ii.P-3 では気中養生および水中養生の7日目の付着 力が 1.0MPa 前後と小さいが、養生条件による付着 力の差は見られない
- iii.素地調整材としてエポキシ樹脂モルタルを用いた
 改良型(以下、P-5)は水中養生において高い付着
 力が得られ、養生期間が増加しても付着力の低下が
 見られない
- iv.素地調整材としてエポキシ樹脂を用いた改良型 (以下、P-6)、ビニルエステル樹脂を用いた改良型 (以下、P-7)、素地調整層を設けずプライマーをエ ポキシ樹脂系に改良した改良型(以下、P-8)では、 すべてにおいて気中養生より水中養生の付着力が小 さいが、養生期間の経過による付着力の大きな低下 は見られない
- v.P-6、P-8 において水中養生時の付着力は他のケー スに比べて付着力が小さい傾向にある。

図-4 付着力試験結果

4.4 押抜きせん断試験

押抜き試験用の供試体として、P-1、P-3、P-5 のみ作 製し、表-7に示す条件で養生した。P-3 は改良を加え たポリマーセメントを評価するため、P-5 は漏水のある 構造物で実績の多いエポキシ樹脂モルタルを評価するために選定した。水中水圧養生は、湿潤環境にある構造物のひび割れや打ち継ぎ目からUUライニングが水圧を受ける環境下にあるとして、付着力の低下の確認を目的とした。本試験では図-5に示すように水頭差 2.0m とした。

表-7 養生条件

名称	場所	条件		期間	
気中養生	恒温室	20°C	28日		
水中養生	恒温水槽	20°C		90日	
水中水圧 養生	倉庫棟	常温 [※] 図−5参照		90日	180日

※水中30日養生後に加圧

図-5 水中水圧養生状況

押抜き試験には、500kN 万能試験機を使用した。載荷 方法は速度制御とし、供試体の素地調整層が破断するま でを、1.0mm/min、それ以降を 5.0mm/min で載荷した。 変形が 10mm 変位する毎に載荷を停止し、供試体のU U樹脂の変形をマーキングした。図-6に押抜き試験の 結果を示す。

養生期間の増加にともない変形性能は異なるが、すべて旧日本道路公団の示す要求性能³⁾「1.5kN で 10mm 以上の変形性能を有するもの」を満たす結果を得ている。

P-1 と P-3 では、水中、水中水圧養生の供試体はほと んど最終変位まで破断することがなかった。それに対し て、気中養生の供試体については水中、水中水圧養生の 約 1/2 の変位で破断した。また、P-5 では、エポキシ樹 脂とコンクリートの界面ではく離した後に、そのはく離 が進行することなくはく離端部もしくは、コア外周部に おいてUU樹脂が破断しているため、変位が小さくなっ た。 等しい荷重が作用しても、引き剥がし界面の延長が長 くなると、単位長さあたりの荷重は小さくなるため、変 位と荷重の結果だけで付着性能の合理的な評価をするの は難しい。そこで、図-7に示すように、引き剥がし界 面に働く単位長さ当たりの鉛直荷重(以下、「鉛直荷重」 と表記)で評価した。換算方法は、図-7の写真にある ようにはく離半径を8側線で計測し、その平均値をはく 離半径としてはく離部周長を算出し、最大荷重を周長で 除した。図-8にその結果を示す。

図-7 ピーリングカ概念図

P-3 では水中養生、さらに水中で水圧を負荷することで、気中養生に比べて鉛直荷重が大きく低下している。 P-1 も、ほぼ同様の傾向にあるが、その変化の幅は小さい。P-3、P-5 ともに水中水圧養生においては、養生期間に関係なく同程度の鉛直荷重を示している。P-5 では、ほぼ鉛直荷重は一定である。これは、最大鉛直荷重がUU樹脂の破断時であったためと思われる。

図-8 鉛直荷重

ここで、図-9に示した P-3 の剥離状態を見ると、図 -10 の P-1 のはく離状態と比較すると、P-3 ははく離半 径が小さく、同心円状にはがれている。これは、はく離 しにくく、付着が均一であることを示している。また、 養生条件が気中養生、水中養生、水中水圧養生の順には く離半径が大きくなっていることがわかる。

一方、図-10 に示す P-1 では、養生条件に関係なく、 はく離面が偏り、8測線上でのはく離半径のばらつきが 大きい。これは、付着が不均一であると考えられる。

4.5 ピーリング(引き剥がし抵抗力)試験

ピーリング試験は、表-7に示す条件で養生した供 試体から、幅 10cm、長さ 100~150cm の部分をディス クサンダーで切断し、ピーリング試験装置を使用してU U樹脂の端部をライニング方向と 90 度の方向へ速度制 御で引張り、変位と荷重を計測した。試験状況を図-11

図-9 P-3の剥がれ範囲計測結果

図-10 P-1 の剥がれ範囲計測結果

図-11 ピーリング試験装置

に示す。また、図-12に試験結果を示す。

気中養生した P-1 は、高いピーリング力が確認できた が、水中養生の場合は、10N/cm 以下と非常に小さい値 となっている。P-2 の気中養生の場合、養生期間の7日 では12N/cm と小さいが、養生期間180日では66N/cm まで増加する。これに対して、P-2 の水中養生の場合、 養生期間7日で40N/cm あったピーリング力は、養生と ともに減少し、養生期間90~180日の間にピーリング力 は10~20N/cm まで減少した。P-3 の気中養生の場合、 ばらつきは見られるが、高い値を示している。P-3 の水 中養生の場合も、養生期間の増加とともに増加し、 60N/cm 以上の高い値を示している。P-4 では気中養生、 水中養生ともに7日目は2N/cm と小さいが、養生期間 の増加とともに増加し、養生期間180日でピーリング力 は約30N/cmとなった。

図-13 に P-1 と P-3 のピーリング力と載荷速度の関係の一例を示す。図中の破線丸印で示す滑らかな増加部は、部分的に付着が高いときに剥離せず塗膜が伸びている時に現れる。このように、ピーリング力から、P-1 は付着にむらがあり、P-3 は全体に均一な付着性能を有していることがわかる。

図-12 ピーリング試験結果

5. まとめ

5.1 経過観察

防水、耐摩耗およびはく落防止の事例ではUU樹脂の 状況は健全であり、当初目的とした機能は保持している と判断できる。

調査対象としたUUライニング工法を適用した構造物 は、比較的厳しい環境にある事例である。経過観察され た事例はそれほど多くないが実構造物で耐久性が確認で きたことは今後の評価に有効な資料となる。

5.2 性能確認試験

実験より、以下の見解を得ることができた。

i. 付着試験より、素地調整層としてポリマーセメン

トを用いたものは、有機系の素地調整層やプライ マーを用いたものと比較して、水中養生においても 付着力を確保できる

- ii. 押抜き試験の鉛直荷重で評価すると付着性能は、
 P-1、P-3 ともに気中養生>水中養生>水中水圧養
 生の順であった
- iii. 付着性試験では水による付着性能の評価は難しく、 ピーリング試験によって性能を評価する必要がある
- iv. ピーリング試験の結果より、現在の仕様(P-1) は水中養生において時間とともに付着力が低下する ことがわかった
- v. 今回製作したポリマーセメントモルタルを素地調 整層とすることで、湿潤環境下にある構造物に対し ても安定した付着性能が確保できることを確認した

6. あとがき

UUライニング工法を適用した構造物の経過観察にお いては不具合は見受けられず、厳しい環境にもかかわら ず十分その性能を発揮していることを確認できた。近年 では、河川構造物等の摩耗対策としてのニーズが高まっ ているが、湿潤環境での付着性能への懸念があった。し かし、今回の実験により、適用範囲を判断できる十分な 成果を得ることができた。

この経過観察に当たっては、「鋼製桁上フランジライ ニングシステム」の共同開発者である阪急電鉄株式会社、 実験においてはUUライニング工法の共同開発者である 大都産業株式会社、供試体の作成に協力して頂いたタカ ラテクノ株式会社、材料提供して頂いた株式会社アド ミックス、株式会社住ゴム産業にはこの場を借りてお礼 を申し上げる。

【参考文献】

- 森本克秀、中野秀和、西山宏一、「ウレア系樹脂ライ ニングによる構造物劣化抑制工法『UUライニング 工法』の適用」、電力土木、No.320、IV pp.36-40、 2006
- 2)「コンクリート補修材料・補強材料(平成 15 年度) (トンネルコンクリートはく落防止材料実験)実験 報告書」、首都高速道路公団、株式会社千代田コン サルタント
- 3)「コンクリート片はく落防止対策マニュアル 平成 12 年11月」、日本道路公団

膨張材を用いたマスコンクリートの収縮低減効果の研究 (その3)

- 膨張ひずみの大きさと鉄筋拘束の検討-

Investigation of the Crack Prevention Effects of Expansive Additive in Massive Concrete Structures (Part 3)

- Examination of Expansive Strain and Restraining Effects of Reinforcements -

東 邦和* 中村敏晴* 増井 仁**

要旨

マスコンクリートにおける膨張材の効果を、壁体を模擬した打重ね試験体により検討した。無筋試験体と 配筋量を変えた鉄筋を3次元的に配置した RC 試験体を作成し、コンクリートと鉄筋のひずみを測定した。 膨張コンクリートと通常コンクリートの打重ね部では、互いの影響でなだらかにひずみが変化した。RC 試 験体の膨張コンクリート部ピークひずみは、鉄筋拘束により主筋方向で無筋試験体の 0.74 倍に抑えられた。 3次元 FEM モデルに膨張ひずみを与えて、要素応力に応じて低減する解析手法を適用した結果、鉄筋拘束 による膨張ひずみ低減が得られ、主筋方向の膨張ひずみは 0.79 倍となった。本解析手法で膨張材による RC 構造物の収縮低減効果を予測できることが示された。

キーワード:マスコンクリート、温度応力、膨張材、膨張ひずみ、鉄筋コンクリート

1. まえがき

鉄筋コンクリート構造物のひび割れ低減対策として、 膨張コンクリートをマッシブな構造物に適用する場合に は、効果の大きさを適切に評価することが必要である。 これまで、膨張材の効果の評価方法が研究されてきたが ^{1~3)}、定量的な評価方法で大型の構造物に適用できる手 法は確立されていない。本研究は膨張コンクリートの応 力履歴を考慮して収縮低減効果を評価することを目的と し、FEM 解析に初期の有効ヤング係数の補正係数と膨 張ひずみを与え、要素応力により低減する方法を提案し ている²⁾。

本研究では、始めに無筋コンクリートと鉄筋を配筋した RC 試験体を作成した。膨張コンクリートの上に膨張 材を添加しない通常コンクリートを連続して打設し、3 方向のコンクリートひずみと鉄筋ひずみの分布を測定し た。本試験体は、膨張コンクリートを部分的に使用して 通常コンクリートを打ち重ねる場合を想定しており、膨 張と拘束が同一試験体で測定できる。

次に、提案している解析手法を適用して、配筋の有無 を比較することによって、鉄筋拘束の大きさと膨張ひず みの分布より、解析手法の精度を検討したものである。

2. 膨張ひずみの測定

2.1 試験方法

コンクリートの使用材料を表-1に、配合を表-2に 示す。セメントは普通ポルトランドセメントを、膨張材 はカルシウムサルフォアルミネートを主成分とするもの を使用した。

膨張ひずみの大きさに及ぼす配筋の影響を測定するために、無筋試験体と RC 試験体の2 種類の試験体を作成

	使用材料
セイント	並通ポルトランドセメント 密度 216 algores^3
	青地ホルトノントピタント、名皮 5.10g/cm
細骨材	富津産山砂、表乾密度 2.60 g/cm ³ 、吸水率 1.27%
粗骨材	岩瀬産砕石、Gmax20mm、表乾密度 2.65 g/cm ³ 、吸水率 0.62%
AE 減水剤	リグニンスルホン酸化合物標準形
膨張材	主成分 カルシウムサルフォアルミネート 低添加型

表-1 コンクリート使用材料

*技術研究所 **東日本支社土木技術部

	水結合	細骨			単位量(kg/m ³	³)		AE 減水剤
配合名	材比	材率	水	セメント	膨張材	細骨材	粗骨材	(l_{ra}/m^3)
	(%)	(%)	W	С	E	S	G	(kg/m)
膨張 (NE)	55	43.8	166	282	20	789	1032	0.981

図-1 打重ね試験体 (無筋試験体)

した。無筋試験体を図-1に示す。無筋試験体は、厚さ 20cm、高さ100cm、幅90cmである。計測方向の拘束を 主にするため厚さは20cmとし、周囲全てに10cm厚の 発泡スチロールを設置し、断熱によりマスコンクリート を模擬すると同時に、型枠による拘束を緩和している。

試験体のケースと拘束鉄筋の諸元を表-3に示す。下 部 50cm 高さに膨張コンクリートを打設し、引き続いて 60 分後に上部 50cm の高さに通常コンクリートを打設し た。打継ぎ面は、バイブレータをかけて一体化した。ま た、水平長手方向のひずみ測定のためのコンクリートひ ずみ計を、高さ方向に4点設置している。

RC 試験体を図-2に示す。RC 試験体は、厚さ40cm、 高さ100cm、幅90cm であり、同様に全周囲に10cm 厚 の発泡スチロールを設置している。X 方向(水平長手方 向)にD22 鉄筋を150mm ピッチ、Y 方向(鉛直方向) にD16 鉄筋を150mm ピッチ、Z 方向(壁厚さ方向)に 中間帯鉄筋としてD13 鉄筋をD22 鉄筋の高さ各段に3

図-2 打重ね試験体 (RC 試験体)

本づつ配置している。断面に対する鉄筋比は、それぞれ D22 が 1.39%、D16 が 0.66%、D13 が 0.30%である。 D22、D16 の鉄筋端部は直角フックを、D13 は半円フッ クをつけている。鉄筋には、No.1、No.4の高さ位置で ひずみゲージを鉄筋左右面に貼付した。鉄筋は互いに曲 げ応力が発生しないように緊結をしていない。

2.2 無筋試験体測定結果

a. コンクリートひずみ測定結果

無筋試験体は、打設温度 20℃、ピーク温度は 49.1℃ (材齢 1.30 日)、外気温は 10℃付近であった。試験体内 部の温度は一様であり、膨張コンクリート部と通常コン クリート部に温度履歴の違いはなかった。

無筋試験体のコンクリートひずみ計によるひずみ測定 結果を図-3に示す。膨張コンクリート部に設置したひ ずみ計の値は、試験体の下部 No.1から 687×10⁶(材 齢 1.43 日)、No.2から 599×10⁶(材齢 1.39 日)のピー クひずみが得られた。通常コンクリート部では、下部

	形状		鉄筋比	
無筋試験体	厚さ 200mm×高さ 1000mm×幅 900mm	無筋		_
		X 方向 水平長手方向	D22 14本(7段) 合計断面積555.2mm ²	1.39%
RC 試験体	厚さ400mm×高さ1000mm×幅900mm	Y 方向 鉛直方向	D16 12本(6本表裏) 合計断面積 238.3mm ²	0.66%
		Z 方向 壁厚さ方向	D13 21本(7段) 合計断面積 266.1mm ²	0.30%

表-3 試験体ケース

No.3で342×10⁶(材齢 1.30 日)、No.4では288×10⁶ (材齢 1.25 日)のピークひずみが得られた。ピークひ ずみの発生材齢は、温度履歴のピーク時材齢(材齢 1.30 日)とほぼ一致している。本試験体では、膨張コンク リートの上部 No.2と通常コンクリートの下部 No.3の ひずみは打重ねの影響を受けている。しかし、打重ね面 から 30cm 離れた通常コンクリート部 No.4のひずみの 値は、約30℃の温度上昇による300×10⁶程度のピーク ひずみとなっており、膨張コンクリートによるひずみ増 大の影響は見られない。

b. 強度測定結果

標準養生供試体と無筋試験体からの採取コア供試体に より、圧縮強度とヤング係数を測定した。コア採取位置 は、通常コンクリート部と膨張コンクリート部および中 間部(打重ね位置)である。各3本を平均した圧縮強度 およびヤング係数測定結果を図-4に示す。材齢28日 の標準養生試験体の圧縮強度は約40N/mm²であり、ヤ ング係数は約3×10⁴N/mm²である。通常コンクリート 部のコアの圧縮強度は多少低いが、膨張コンクリート部 のコアおよび中間部のコアの圧縮強度、ヤング係数には 大きな違いはない。

2.3 RC 試験体測定結果

a. コンクリートひずみ測定結果

RC 試験体は、打設温度 25℃、ピーク温度 57.5℃(材 齢 1.56 日)、外気温は 25℃付近であった。膨張コンク リート部と通常コンクリート部に温度履歴の違いはな かった。

RC 試験体のコンクリートひずみ計によるひずみ測定 結果を図-5に示す。膨張コンクリート部に設置したひ ずみ計は下部 No.1から 505×10⁶ (材齢 1.52 日)、No. 2から 504×10⁶ (材齢 1.51 日)のピークひずみが得ら れた。通常コンクリート部では下部 No.3で 326×10⁶ (材齢 1.32 日)、No.4では 287×10⁶ (材齢 1.23 日)の ピークひずみが得られた。ピークひずみの発生は、温度 履歴のピーク時(材齢 1.56 日)とほぼ一致している。 膨張コンクリート部のひずみの値は、配筋の影響を受け

図-6 ひずみ分布の材齢による変化(無筋試験体)

図-7 ひずみ分布の材齢による変化(RC 試験体)

て無筋試験体より小さい。本試験体でも、打重ね面から 30cm 離れた通常コンクリート部上部の No.4 ひずみ計 の値は、約 30℃の温度上昇による 300×10⁻⁶程度のピー クひずみとなっており、膨張コンクリートによるひずみ 増大の影響は見られない。

無筋試験体におけるひずみ分布の材齢による変化を図 -6に、RC 試験体の変化を図-7に示す。ひずみの ピーク値は、前述の無筋試験体で 687×10⁻⁶(材齢 1.43 日)、RC 試験体では 505×10⁻⁶(材齢 1.52 日) である。 材齢2日から温度低下により収縮を始め、材齢 15 日程 度で外気温に一致するまで収縮する。いずれの試験体も、 通常コンクリート部のひずみは、打重ね部分近傍では膨 張コンクリートの膨張ひずみの影響を受けて連続的に変 化している。鉄筋拘束により、RC 試験体の膨張コンク リート部のピークひずみは無筋試験体の 0.74 倍に抑え られている。RC 試験体の通常コンクリート部は膨張要 因が温度変化だけなので、ひずみの変化は無筋試験体と 変わらない。また、無筋試験体および RC 試験体の、膨 張コンクリート部(No.1)と通常コンクリート部(No.4) のひずみの差はピークひずみからの温度降下による収縮 があっても、変わらないことが分る。

RC 試験体の鉛直方向(Y 方向)と壁厚さ方向(Z 方 向)に設置したコンクリートひずみ計の測定結果を図-8に示す。試験体壁厚さ方向のピークひずみは948× 10⁶(材齢 1.65 日)と大きく、自由膨張ひずみとほぼ等 しい値である²⁾。これは、壁厚さ方向の長さが短く、拘 束鉄筋量が少ないため、膨張ひずみの拘束が得られてい ないことによる。通常コンクリート部のひずみは、275 ×10⁶(材齢 1.31 日)となり温度上昇による大きさであ る。鉛直方向は396×10⁶(材齢 1.05 日)と、縦筋の拘 束により中間的な値を示した。

b. 鉄筋ひずみ測定結果

鉄筋に貼付したひずみゲージによる鉄筋の実ひずみの 測定結果を図-9に示す。通常コンクリート部分は温度 変化に応じた伸びと収縮であり、ピークひずみは D22 で287×10⁻⁶(材齢1.31日)の伸びひずみが得られた。

図-8 ひずみ (コンクリートひずみ計) Y 方向(鉛 直)および Z 方向(壁厚さ)の測定結果

図-9 鉄筋計ひずみ D22 (X 方向)、D16 (Y 方向)、 13 (Z 方向)の測定結果

D16、D13 ともに同様である。膨張コンクリート部分の ピークひずみは、D22 は 418×10⁻⁶(材齢 1.48 日)、D16 は 502×10⁻⁶(材齢 1.59 日)、D13 では 458×10⁻⁶(材齢 1.41 日)の測定結果が得られた。D22、D16 のピーク値 はコンクリートひずみ測定値とおよそ一致しているが、 壁厚さ方向 D13 のピーク値はコンクリートひずみ測定 値(948×10⁻⁶ 図-8参照)と比較して 0.48 倍と小さ い値を示した。これは、鉄筋長さが 30cm と短く、膨張 ひずみを十分拘束できないことによる。

3. 膨張ひずみの解析

3.1 解析モデルと解析方法

試験体ひずみの FEM による検討を行う。無筋試験体 (1/4 モデル) と RC 試験体 (1/1 モデル) の解析モデル を図-10 に示す。解析条件を表-4に示す。解析にお けるコンクリートの圧縮強度と材齢の関係、および有効 ヤング係数 (E_e) は、標準示方書⁴⁾ に準拠した。有効 ヤング係数補正係数 (ϕ) は材齢 1.2 日まで 0.34、材齢 5 日以降 1.0 とし、その間を線形補間した。解析は拘束 圧依存性を示す双曲線式を用いて、時間軸における膨張 ひずみの増分を各軸方向の拘束圧に応じて低減して計算 した²⁾。双曲線式を下記の式(1)に示す。

ε _{ci}:i方向の膨張ひずみ

- ε₀: 無拘束の膨張ひずみ
- ϵ_f : 拘束無限大の膨張ひずみ

a: 拘束圧依存パラメータ

 $\sigma_i: i 方向の拘束圧 (N/mm^2)$

本解析で用いた双曲線パラメータは $\varepsilon_f/\varepsilon_0=0.05$ 、a=5 である。膨張ひずみを拘束しないと考えられる引張応力側に移行した時のひずみ増分は低減していない。膨張試験から得られたピークひずみの大きさを $\varepsilon_0=700\times 10^6$ として解析した。解析に用いた膨張ひずみを図-11に示す。

3.2 解析結果

a. コンクリートひずみ

コンクリートひずみ(無筋試験体 X 方向)の解析結 果を図-12 に示す。本試験体の温度解析結果のピーク 温度は 47.2℃(材齢 1.26 日)であり、ピーク温度測定 値より 1.9℃低いが、ほぼ一致している。膨張コンク リート部のひずみの解析値は、下部 No.1は 688×10⁶ (材齢 1.96 日)、No.2は 592×10⁻⁶(材齢 1.96 日)の ピークひずみが得られた。通常コンクリート部では、

No.3は329×10⁶(材齢 1.59 日)、No.4では259×10⁶ (材齢 1.26 日)のピークひずみが得られた。膨張部の ピークひずみの材齢は試験体測定値より約0.5 日遅れて いるが、ピークひずみの値は測定値(687×10⁶ 図ー 3参照)と一致している。ピークひずみ発生材齢の遅れ は、解析に用いた膨張ひずみの膨張発現材齢の差異が原 因と考えられる。

コンクリートひずみ (RC 試験体 X 方向)の解析結果 を図-13 に示す。本試験体の温度解析結果のピーク温 度は 56.0℃(材齢 1.42 日)であり、測定値より 1.5℃低 い。膨張コンクリート部のひずみの解析値から下部 No. 1 では 544×10⁶(材齢 1.96 日)、No.2では 491×10⁶ (材齢 1.96 日)の膨張ひずみが得られた。通常コンク リート部では、No.3 で 348×10⁶(材齢 1.77 日)、No.4

表-4 解析条件

項目	設定定数
コンク リート	 普通ポルトランドセメント 断熱温度上昇特性: 無筋試験体:Q_∞46.2°C、γ1.300、打設温度20°C RC 試験体:Q_∞45.7°C、γ1.328、打設温度25°C 圧縮強度f'(28)34N/mm² 熱伝導率2.7 W/m°C、比熱1.15 kJ/kg°C, 単位体積質量2300 kg/m³,線膨張係数10×10⁶/°C 熱伝達率:発泡スチロール, 無筋試験体0.75 W/m²°C、RC 試験体1.0 W/m²°C
鉄筋	ヤング係数 2.06×10 ⁵ N/mm ² 線膨張係数 10×10 ⁶ /C

では301×10⁻⁶(材齢1.59日)のひずみが得られた。

コンクリートひずみ (RC 試験体 Y、Z 方向)の解析 結果を図-14 に示す。膨張コンクリート部の壁厚さ方 向 (Z 方向)のピークひずみは、No.1では 696×10⁶、 通常コンクリート部 No.4では 293×10⁶ であった。壁 厚さ方向 (Z 方向)の解析値は、節点位置で鉄筋要素が コンクリート要素と繋がれていることから鉄筋拘束によ り、コンクリートひずみ測定値 (948×10⁶ 図-8 参 照)との比較では 0.73 倍と小さい値となった。鉛直方 向 (Y 方向)では、膨張コンクリート部 No.1のひずみ の解析値は 576×10⁶、通常コンクリート部 No.4では 307×10⁶のひずみが得られた。

本解析では、膨張コンクリート部は、無拘束膨張ひず みの値²⁾を700×10⁶として、各軸方向の要素圧縮力に 応じて解析ステップにおける膨張ひずみを低減した解析 をしている。解析結果は、配筋量の違いから生じる鉄筋 拘束によりコンクリートひずみが低減される状況を良好 に表した。解析値の比較は、無筋試験体モデルと比べて RC 試験体モデルでは No.1位置(X 方向)で688×10⁶ に対して544×10⁶と0.79 倍となり、測定値の変化の 0.74 倍を良好に解析できた。

b. 鉄筋ひずみ解析結果

鉄筋ひずみ解析結果 (D22 X 方向)を図-15 に示す。 膨張コンクリート部 (D22 下)の解析値は、それぞれ ピークひずみで 506×10⁶、通常コンクリート部 (D22 上)では 299×10⁶のひずみが得られた。

鉄筋ひずみ (D16 Y 方向、D13 Z 方向)の解析結 果を図-16 に示す。D16 の膨張コンクリート部の解析 値はそれぞれピークひずみで 578×10⁶、通常コンク リート部は 298×10⁶、D13 の膨張コンクリート部の解 析値は 645×10⁶、通常コンクリート部は 295×10⁶のひ ずみとなった。鉄筋ひずみは解析モデルにおける鉄筋拘 束の状況を表しており、膨張コンクリート部のピーク値 は測定値に対して D22 の場合に 506×10⁶ (図-15 参照 解析値)は 418×10⁶ (図-9参照 測定値)に対して 1.21 倍、D16 は 1.15 倍 (図-9、16 参照)となったが、 D13 は 1.41 倍 (図-9、16 参照)となり、壁厚さ方向 の解析モデルでの拘束は過大になっている。

4. あとがき

本研究の範囲内で、以下の結果が得られた。

- i. 無筋試験体、RC 試験体ともに、打重ね断面近傍 では膨張の影響によりひずみがなだらかに変化する が、打重ね面から 30cm 離れた通常コンクリート部 は、温度上昇のみによる伸びひずみのピークとなり、 膨張コンクリートによるひずみ増大の影響は見られ ないことが分った
- ii. RC 試験体の膨張コンクリート部のピークひずみ

図-15 鉄筋ひずみ解析結果 (RC 試験体 D22 X 方向)

は鉄筋拘束により無筋試験体の 0.74 倍に抑えられ ること、両試験体の膨張部と通常部のひずみの差は、 温度降下による収縮によっても変わらないことが明 らかとなった

- … 標準養生供試体とコア採取供試体の測定結果から、
 膨張コンクリート部、打重ね部および通常コンク
 リート部の圧縮強度、ヤング係数に大きな違いはな
 いことが確認された
- iv. 配筋量の異なる鉄筋拘束により膨張ひずみが低減 される状況が解析され、水平長手方向(X方向)の 膨張量の低下は 0.79 倍となり、本解析手法で RC 構造物の収縮低減効果を解析できることを示した

【参考文献】

- 三谷裕二他、「マス養生温度履歴下における膨張コンクリートの応力評価手法」、コンクリート工学年次論文集、Vol.28、No.1、pp.1295-1300、2006.7
- 2)東邦和、中村敏晴、増井仁、梅原秀哲、「膨張材 によるマスコンクリートの収縮低減効果の解析手 法と構造物適用」、コンクリート工学年次論文集、 Vol.30、No.2、pp.145-150、2008.7
- 3) 高瀬和男他、「場所打ち PC 床版の材齢初期における膨張材効果の評価方法に関する一提案」、コンクリート工学年次論文集、Vol.24、No.1、pp.549-554、2002.7
- 4) 土木学会「コンクリート標準示方書 2007 年制定」

新設コンクリート構造物の品質保証システム - ICT を活用したコンクリート打設支援システムの開発-

Quality Assurance System of New Concrete Structures

- Development of Concrete Placement Support System using ICT -

廣中哲也* 東 邦和* 石井敏之* 川口昇平*

要 旨

施工段階におけるコンクリートの初期欠陥の防止、打込み時のコンクリートの品質の確保と信頼性の向上 を目的に、コンクリート打設支援システムを開発した。開発したシステムは、コンクリートの練混ぜから打 込み完了までにおけるコンクリートの運搬、品質、施工情報を、ICT を活用して打設場所や現場事務所など で共有できるようにしたものである。本システムの現場適用試験を行った結果、コンクリートの打設速度に 合わせた出荷量の調整、打重ねおよび打込み時間の管理がリアルタイムで的確に行うことができ、施工段階 におけるコンクリートの品質をより確実に確保できることがわかった。

キーワード:コンクリート、品質管理、打込み管理、施工段階、ICT

1. まえがき

新設コンクリート構造物の耐久性などの性能を確保す るには、コンクリートの品質管理を適切に行うことが重 要である。また、「公共工事の品質確保の促進に関する 法律」の制定(2005年)により、発注者はコンクリー トの品質に対して、より厳格な管理を求めるようになっ てきている。このような状況下で、施工者においては、 施工前から施工後まで一貫した品質の管理が行える新設 コンクリート構造物の品質保証技術が必要となってきて いる。

従来は、特記仕様書などに示されている管理方法を遵 守することにより、新設コンクリート構造物の品質管理 を実施してきた。しかし、昨今の技術提案では、従来の 管理方法に加え、耐久性などの性能がより明確かつ確実 に確保できる施工技術や管理方法が求められている。

そこで、施工前から施工後まで一貫した品質管理によ り品質を保証する「新設コンクリート構造物の品質保証 システム」を提案した¹⁾。その概要を図-1に示す。こ の品質保証システムは、「施工前、施工段階、施工後」 の各段階での品質管理を行うことによって、新設コンク リート構造物の品質保証を目指したものである。各段階 での品質管理は、施工前では中性化や塩害などの劣化に ついて、耐用年数内での劣化予測、補修計画、ライフサ イクルコストなどの耐久性確保の設定を行い、施工段階 では初期欠陥を防止するために、コンクリートの打込み 時間や打重ね時間などをコンクリート打設支援システム を用いて運搬管理および施工管理を行うことによって品 質確保を行う。さらに、施工後には構造物の出来形とし て配筋の確認や初期欠陥の有無などを非破壊検査の実施 によって品質確保を行っている。

本報では、施工段階での初期欠陥の防止や打込み時 のコンクリートの品質確保を目的として開発したコンク リート打設支援システムの概要と現場への適用試験結果 について報告する。

*技術研究所

2. コンクリート打設支援システムの概要

2.1 概 要

コンクリート打設支援システムの概要を図-2に示す。 本システムは、運行管理システムと品質管理システムか ら構成されている。

コンクリート打設支援システムは、施工段階でのジャ ンカやコールドジョイントなどの初期欠陥の防止、打込 み時のコンクリートの品質の確保と信頼性の向上などを 図るために、コンクリートの練混ぜから打込み完了まで におけるコンクリートの運搬時間と品質の情報、および 打込まれた位置と時刻、打重ね時間などの施工情報を、 ICT(情報通信技術)を活用して打設場所や現場事務所 などでリアルタイムに共有できるようにしたものである。

運行管理システムは、コンクリートのプラント出荷 時刻、荷卸し開始時刻、荷卸し終了時刻と運搬するコン クリートの種類、数量などの出荷・荷卸し情報(IC カードシステム)、およびコンクリートの受入れ検査結 果の品質情報(携帯電話システム)の管理を行っている。 一方、品質管理システムは、最適な打設計画の立案(打 設計画作成システム)、打ち込まれたコンクリートの位 置と時刻、打重ね時間などの打込み情報(打込み管理シ ステム)、および打込み状況のWEB カメラによる映像 情報(WEBカメラシステム)の管理を行っている。

使用機器は、情報の入出力および処理・表示を行うパ ソコン (プラント、受入れ場所、打設場所、現場事務所 などに設置)、コンクリートの出荷・荷卸し情報を記録 させる IC カードとその情報を読み書きするリーダ・ラ イタ装置、コンクリートの受入れ検査結果を送信する携 帯電話、パソコン間の情報を伝送する通信カード、打設 場所などを撮影する WEB カメラである。

2.2 特長

本コンクリート打設支援システムの特長は、以下の通 りである。

- i. 打設計画作成システムのシミュレーション機能を 用いることにより、最適な打設条件の設定や打重ね 時間が最大になる位置と時刻の予測ができる
- ii. コンクリートの出荷・荷卸し情報により、コンク リートの出荷済、荷卸し中、荷卸し終了の数量が表 示され、打設速度に応じた出荷量の調整が即座にで きる
- iii. スランプなどの品質管理図が表示され、コンク リートの品質変動に対して迅速な対策ができる
- iv. 打込み時間や打重ね時間が視覚的に表示され、打 込み中のコンクリートの的確な品質管理対策がで きる

図-2 コンクリート打設支援システムの概要

- v. 打設完了後に、打設実績、受入れ検査結果などの 帳票を出力することができ、省力化を図ることが できる
- vi. ICT による情報の共有化により、打設場所、現場 事務所および支社などでリアルタイムに情報が確 認でき、品質管理情報の信頼性が向上する
- vii. 打ち込まれたコンクリートの施工記録(トレーサ ビリティー)を残すことができ、維持管理に活用 できる
- 2.3 構成
- a. 運行管理システム

写真-1に示すように、パソコン、IC カードおよび リーダ・ライタ装置からなる IC カードシステムをプラ ントと受入れ場所に設置する。アジテータ車の運転手に は IC カードを携行させ、プラントの出荷時、受入れ場 所での荷卸し開始時と荷卸し終了時にリーダ・ライタ装 置に IC カードをタッチさせる。これにより、プラント パソコン (プラントに設置したパソコン) では、図-3 に示すように運搬されるコンクリートの種類、数量およ び出荷時刻などの出荷情報が表示され、出荷の確認がで きる。同時に、これら出荷情報は IC カードへの書込み と事務所パソコン(現場事務所に設置されたパソコン) に伝送される。同様に、受入れパソコン(受入れ場所に 設置したパソコン)では、図-4に示すようにコンク リートの荷卸し開始時刻と荷卸し終了時刻の荷卸し情報 が表示され、同時に、これら荷卸し情報が IC カードに 書込まれ、事務所パソコンへ伝送される。これらの出 荷・荷卸し情報から、品質管理項目である運搬時間(プ

写真-1 IC カードシステム

図-4 受入れパソコンの画面表示(例)

18	D-TSynh	- 12 -	0 14/C	ψ 83 τ π			ND 17-	1,21**7(<u>#</u>	.00 24	- 5 ¹	m . A	- 4				-
	2 - 2			<u>U</u>			ar /o	3 .00	+.0 17	Z1 d0						
		5 e la V	36 H		12 🗇 🕂	(K) 4	(3) v 4	⊕ 2	J× 2+	X+ M	4 6 00		• 🕼 🗱 •			
1	BG	D	F	F	G	Н	I	K	1	M	N	0	Р	0	R	S
T									運搬実	嫧		-				
1	No 955	プラント	車両No	台数	ŏ2:6	積載量	打动	waten	II#78	RUNH	荷和完了	R>75	打設箇所	HABIN	利定	備考
	1	大吉生コン羽生工場	30	1	27-12-20N	4.25	4.25	6.59	7:19	727	7:58	P1	S1-1	59	0	試験1
	2	大宮生コン羽生工場	375	2	27-12-20N	4.25	8.50	7.09	7:29	7:36	8:15	P1	S1-1,S4-1,S5-1,S6-1	66	01	
	3	大喜生コン羽生工場	220	3	27-12-20N	4.25	12.75	7:19	7:39	7:42	821	P1	S1-1,S4-1,S5-1,S6-1	62	Ó	
	4	大唐生コン羽生工場	323	4	27-12-20N	4.25	17.00	7:31	7:51	821	833	P1	S3-1,S4-1,S5-1,S8-2	62	0	
	5	大吉生コン羽生工場	380	5	27-12-20N	4.25	21.25	7.54	8:14	8:21	8:42	P1	53-1,54-1,55-1,55-1,56-2	48	0	
	6	大喜生コン羽生工場	131	6	27-12-20N	4.25	25.50	8.05	8:25	8:38	8.55	P1	S2-1,S6-1,S8-2	50	0	途中で中止
	7	大喜生コン羽生工場	111	7	27-12-20N	4.25	29.75	822	8:42	855	9.06	P1	S2-1,S8-2	44	0	
	8	大喜生コン羽生工場	106	8	27-12-20N	4.25	34.00	827	8:47	9:15	859	P1		32	0	
	9	大吉生コン羽生工場	31	9	27-12-20N	4.25	38.25	8:42	9:02	9:10	9:22	P1	S7-2,S8-2	40	0	
	10	大喜生コン羽生工場	31	10	27-12-20N	4.25	42.50	7.05	7:25	7.33	8.02	P2	N1-1	57	0	
	11	大唐生コン羽生工場	217	11	27-12-20N	4.25	46.75	7:15	7:35	8.05	8:15	P2	N1-1	60	0	
	12	大吉生コン羽生工場	210	12	27-12-20N	4.25	51.00	7:26	7:46	7:50	827	P2	N1-1,N2-1,N3-1	61	0	
	13	大吉生コン羽生工場	123	13	27-12-20N	4.25	55.25	8.02	8:22	8:30	8:37	P2	N1-1,N2-1	35	0	
	14	大喜生コン羽生工場	121	14	27-12-20N	4.25	59.50	8:15	8:35	8:44	851	P2	N4-2	36	0	
	15	大唐生コン羽生工場	113	15	27-12-20N	4.25	63.75	816	8:36	850	9.01	P2	N4-2	45	0	
	16	大吉生コン羽生工場	205	16	27-12-20N	4.25	68.00	8:34	8:54	9:00	9:10	P2	N4-2	36	0	
	17	大吉生コン羽生工場	30	17	27-12-20N	4.25	72.25	8:37	8:57	9:06	9:17	P2	N4-2,N6-1	40	0	
	18	大喜生コン羽生工場	375	18	27-12-20N	4.25	76.50	852	9:12	9:15	9.25	P2	N4-2,N5-1,N6-1	33	0	
	19	大喜生コン羽生工場	217	19	27-12-20N	4.25	80.75	9:02	9:22	9:25	9:35	P1	S8-2	33	0	
	20	大宮生コン羽生工場	210	20	27-12-20N	4.25	85.00	9:10	9:30	9:40	9:45	P1	S8-2	35	0	
	21	大宮生コン羽生工場	123	21	27-12-20N	4.25	89.25	9:17	9:37	9:45	9.53	P1	S8-2	36	0	
	22	大喜生コン羽生工場	220	22	27-12-20N	4.25	93.50	9.07	9:27	9.34	9.43	P2	N5-1,N9-2	36	0	
	23	大唐生コン羽生工場	323	23	27-12-20N	4.25	97.75	9:16	9:36	9:38	9:49	P2	N5-1,N9-2	33	0	
	24	大宮生コン羽生工場	121	24	27-12-20N	4.25	102.00	9:26	9:51	9:58	10:04	P1	S8-2	38	0	
	25	大喜生コン羽生工場	131	25	27-12-20N	4.25	106.25	9.36	10.01	10:05	10:10	P1	S8-2,S9-1	34	0	
	26	大喜生コン羽生工場	380	26	27-12-20N	4.25	110.50	9.22	9:47	9.52	10:00	P2	N9-2	38	0	
4	> N/L	-ン割付()層	170-	-ン割	行()層目)】	TI	重時間	/実績	重時間	小運搬	E I	-	147 040 040 0		1 pin	
,.	1k		- A-					AP 11-11							MUM	1 [[]

ラント出荷時刻から荷卸し開始時刻までの 経過時間)と打込み時間(プラント出荷時 刻から荷卸し終了時刻までの経過時間)に ついての管理制限値との比較判定結果、ア ジテータ車の運搬状況(プラント出荷済、 荷卸し中、荷卸し終了)および打設速度な どが計算され、図-7に示すように全ての パソコンにリアルタイムで表示される。打 込み完了後には、図-5に示すコンクリー ト運搬の実績一覧表を、EXCEL 形式で出 力することができる。

コンクリートの受入れ検査結果は、携 帯電話システムを利用して事務所パソコ ンへ検査結果と写真が送られる。受入れ 検査項目は、スランプ、空気量、塩化物 イオン量、コンクリート温度、外気温を 初期設定しているが、検査項目の追加・ 削除は、携帯電話のメニュー画面の指示 に従って携帯電話のガイドキーで簡単に 行える。写真-2に携帯電話の表示画面 例を示す。受入れ検査結果は、図-7に 示すように検査結果表と品質管理図が全 てのパソコンにリアルタイムで表示され る。また、打ち込み完了後には、図-6 に示す受入れ検査の結果一覧表および品 質管理表を出力することができる。

b. 品質管理システム 打込み管理システ ムは、図-7に示す打 設パソコン(打設場所 で使用するパソコン) の打込み管理画面で打 重ねの時間管理を行う。 同画面では、打重ね時 間管理表、打重ね時間 図、アジテータ車運搬

状況表、受入れ検査結 切替 1層目~2層目 変更 打重ね時間図
 N4
 N4
 N5
 N6
 N6
 N6

 N4
 N4
 N3
 N3
 N3
 N6
 N1 N4 NI NI N4 N1 N4 S19 519 519 519 519 523 524 524 524

図-6 受入れ検査結果一覧表(例)

🔣 Micr	osoft E	xcel- 頂飯_20080731.	xls						
1 77-	(ル(<u>F</u>) 編	[集∈] 表示(⊻) 挿入(0) 書	式(0) ツール(<u>I) データ(D) ウィ</u>	ンドウ(W) ヘル	プ(<u>H</u>)			_ 8 ×
MSP	シック	• 11 • B / U	EEE	B 9%	*.0 .00 f	E (E 10 - 💩	· A · .		
l D 😚			l () () ()			2 40 10	18 - 20	2	
			D	F	F	0	LL	T	
A		U	U	にたまわ		u 1/=Last)	m	1	
1	1			1里亿	時间明維				
3	No	打重ね	打香ね雨	最大 打重ね時間	発生時刻	既 打込み	T設箇所の 開始・終了時	刻	備老
4		対家箇所		(分)		既打設箇所	開始時刻	終了時刻	
5	1	N1 (1 層)→N2(1 層)	鉛直	0	08:00	N1 (1 層)	07:30	08:00	
6	2	N1 (1 層)→N3 (1 層)	鉛直	17	08:17	N1(1層)	07:30	08:00	
7	3	N2(1層)→N3(1層)	鉛直	0	08:17	N2(1層)	08:00	08:17	
8	4	N3(1層)→N4(2層)	水平	0	08:23	NB(1層)	08:17	08:23	
9	5	N1(1層)→N4(2層)	水平	23	08:23	N1(1層)	07:30	08:00	
10	6	N2(1層)→N4(2層)	水平	6	08:23	N2(1層)	08:00	08:17	
11	7	N2(1 層)→N5(1 層)	鉛直	6	08:23	N2(1層)	08:00	08:17	
12	8	S5(1 層)→N5(1 層)	鉛直	25	08:55	S5(1層)	08:21	08:30	
13	9	S6(1層)→N5(1層)	鉛直	7	08:55	S6(1層)	08:30	08:48	
14	10	N3(1層)→N6(1層)	鉛直	34	09:29	N3(1層)	08:17	08:23	
15	11	N5(1層)→N6(1層)	鉛直	0	09:29	N5(1層)	08:55	09:29	
16	12	N5(1層)→N7(2層)	水平	10	09:39	N5(1層)	08:55	09:29	
17	13	N4(2層)→N7(2層)	鉛直	34	09:29	N4(2層)	08:23	08:55	
18	14	N5(1層)→N8(2層)	水平	16	09:45	N5(1層)	08:55	09:29	
19	15	N4(2層)→N8(2層)	鉛直	34	09:29	N4(2層)	08:23	08:55	
H 4 >	▶∖計画	画実績明細 (レーン割付)	(レーン割付く	1層目)/レーン	割付(2層目))	atē 📢			•
コマンド		2016		2010				NUM	

図-8 打重ね時間管理一覧表(例)

図-7 打込み管理画面(例)

果表、打設速度、コンクリートの品質管理図な どが表示される。打込み管理は、打重ね時間管 理表あるいは打重ね時間図に、打設計画でブ ロック割りされた打込み箇所(以下、ブロック と称す)へのコンクリートの打込みの開始と終 了時刻を入力(画面にタッチすることによって 自動的に入力される) することによって、打重 ね時間などの打込み状況を管理するものである。 これらの打込み情報により、ブロックに打ち込 まれたコンクリートの最終打込み時刻からの経 過時間がブロックごとに色別表示と所定の打重 ね管理時間内の警告によって、コンクリートの 打重ねを確実に行える。この打込み情報は事務 所パソコンを経由して、全てのパソコンにリア ルタイムで表示される。また、打設速度やアジ テータ車の運搬状況も打設場所で把握でき、コ ンクリートの出荷量調整を適切に行うことがで きる。同時に、運行管理システムにおける IC カードシステムの出荷・荷卸し情報を活用する ことによって、図-5に示すように、コンク リートのトレーサビリティーとして運搬された コンクリートの打込み箇所が判別できるように なっている。打込み完了後には、図-8に示す コンクリート打重ね時間管理の一覧表を出力す ることができる。

打設計画は、図-9に示す打設計画作成シ ステムのフローに従って作成される。打設条件、 ブロック割りなどを入力すると、入力された条 件で、時間ステップごとに施工進捗状況を求め るシミュレーション機能によって運搬、打込み、

打重ね時間などが所定の管理時間内で行える最適な打設 条件の設定や打重ね時間が最大になるブロックと時刻の 予測ができる。この打設計画作成システムにより、打込 み箇所への数量、打込み時刻、打重ねの予想時間、アジ テータ車の配車などが計画される。

3. 現場適用試験

3.1 試験概要

コンクリート打設支援システムの有効性を確認するた めに、現場適用試験を2回実施した。現場適用試験では、 システムの操作性、コンクリートの打重ねの時間管理お よびコンクリートの品質管理を行った。なお、今回の試 験では、コンクリート打設支援システムのうち品質管理 システムのみを適用した。

3.2 適用現場

適用した現場は、埼玉県の農業集落排水事業における 汚水処理施設の建設工事である。システムを適用した汚 水処理施設は、図-10 に示す幅 22m×長さ 30m×深さ

7mの大きさで、躯体コンクリートの打設を4回に分けた。なお、コンクリート打設支援システムは、第3回目(2回目の壁打設:320m³)と第4回目(壁・梁・頂版打設:330m³)の打設で適用した。

3.3 適用結果

第4回目の壁・梁・頂版打設の適用結果について報告 する。なお、第4回目の打設日は平成20年7月31日で、 気温は終日25℃超であった。

試験時の装置等の配置は、図-11 に示すように、ポ ンプ車2台で打込みを行ったので、打設パソコンを2台、 受入れパソコンを1台とした。

a. 打設計画の作成

ブロック割りと打込み順序を入力して、各ブロックの 打込み数量、打込み時刻、最大打重ね時間およびアジ テータ車の配車予定などを打設計画作成システムを用い て作成した。打設高さは、壁部の高さ 2.1m、頂版厚 0.2m、梁せい 0.7m であることから、打込み高さは、梁 下 1.4m までの壁部を第1層とし、残りの壁・梁・頂版 を第2層として打ち重ねることにした。

図-12 に第1層と第2層の打設計画図を示す。ポン プ車2台で打ち込むため、打設計画はポンプ車別(北側 と南側)に作成した。シミュレーション機能の結果より、 打重ね時間が最大となるブロックは、共に第2層打設時 で、北側でブロック N12 の 82 分、南側でブロック S8 の59 分と予想された。

b. 打重ね管理と品質管理結果

ブロックへの打込みの開始および終了時刻の入力は、 打重ね時間図への手によるタッチ方式により、能率よく 入力できることを確認した。

実績の最大打重ね時間は、北側で第2層打設時のブ ロック N5の 68 分、南側で第2層打設時のブロック S 8の91 分であった。

ブロックに打ち込まれたコンクリートの最終打込み時 刻からの経過時間(打重ね管理)は、ブロック別に 20 ~30 分単位ごとに色分け表示しているため、視覚的に 状況が把握でき、打重ね時間の管理がより確実に実施で きた。

さらに、施工記録が電子化されているため、打設終了 後の帳票作成作業の省力化に有効であることを確認した。 また、ICT を活用しているので、現場事務所でも、コン クリートの打設速度や数量および打込み箇所などの進捗 状況がリアルタイムで把握でき、的確な対応ができるこ とを確認した。

4. あとがき

コンクリート打設支援システムは、2009 年9月から 2現場で運用を開始する予定である。

また、本システムは、運行管理システムと品質管理シ

図-12 打設計画

ステムから構成され、さらに各システムは、IC カード システム、携帯電話システム、打設計画作成システム、 打込み管理システム、WEB カメラシステムのサブシステ ムから構成されている。これらのサブシステムは、個々 に独立して使えるように構築されている。

今後も、実現場への適用を行い、新設コンクリート構 造物の品質保証に役立てていきたい。

【参考文献】

 例えば、奥村組、「生コンの製造から打設までを一元 管理」、日経コンストラクション p.46、2007 9月 28 号

奥村式モルタルパイプシュートの開発

ー傾斜管路を自然流下させたモルタルの流下特性ー

Development of the Pipe Chute for Flowing Mortar

- Flowing Characteristic of Mortar that Nature Makes Inclination Piping Flow -

新出栄一*小野 剛** 廣中哲也*** 石井敏之***

要旨

コンクリートダムでは、コンクリート運搬用の設備でモルタルを運搬するため、使用量の少ないモ ルタルの運搬によりコンクリートの運搬効率が低下する。そこで、モルタルを斜面の専用管路により 自然流下させる方法を考案し、既存のモルタル配合を基本として流下試験を実施した。その結果、流 下可能な配合、品質管理項目とその範囲、モルタル付着量と流量等の流下特性、および運搬に必要な 管路径の目安が得られ、実施工に適用可能であることが分かった。

キーワード:モルタル、流下特性、スランプフロー、流量、付着量

1. まえがき

コンクリートダムでは、モルタルとコンクリートをダ ム用クレーン等の同一の設備で運搬している。そのため、 使用量がコンクリートの1~2%程度と少ないモルタル の運搬により、コンクリートの運搬効率が低下している。 そこで、モルタルの運搬を通常の運搬設備から切り離し、 斜面を利用した専用管路により、モルタルを製造地点か ら打込み地点のアジテータ車までの100m 程度の距離を 自然流下で運搬する方法(以下、「モルタルパイプ シュート」と称す)を考案した(図-1)。

本稿では、コンクリートダムの既存のモルタル配合 を基本とした流下試験を実施し、流下可能な配合、品質 管理項目とその範囲、モルタル付着量と流量等の流下特 性、および運搬に必要な管路径について報告する¹⁾。

2. 実験概要

流下可能な配合、および品質管理項目とその範囲の選 定を目的とした流下試験シリーズ I と、流下特性、およ び実施工への適用性の検討を目的とした流下試験シリー ズⅡを実施した。

2.1 配合および使用材料

表-1にモルタルの標準配合および使用材料を示す。 モルタルの標準配合は、ダム現場3箇所の既存のモルタ ル配合を参考に決定した。結合材に水和発熱抑制のため、 フライアッシュ置換率30%の中庸熱ポルトランドセメン

図-1 モルタルパイプシュートの概略図

表-1 モ	ルタルの標準配	合および	使用材料
-------	---------	------	------

水ᡧ╧╧╅╁┝┙	フライアッシュ	利率キー	単位量(kg/m ²)						
W/B	置換率 FA/B		水	結合材B [®]		細骨材	減水剤		
(%)	(%)	S/B	Ŵ	セント C	フライアッシュ FA	S	(B×%)		
60	30	2. 75	300	350	150	1360	0~1.5		
【使用林桃	【使用材料】								
セメント:	セメント:中庸熱 ルトランドセメント、密度3.21g/cm ³ 、(TS 社製)								
フライアッシュ :	フライアッシュ : JIS フライアッシュ II種、密度 2.29g/cm²、七尾大田火力発電所 2号機産								
細骨材 : 桜川産硬質砂岩砕砂、密度2.63g/cm²、粗粒率2.73、吸水率0.84%									
AL源水剤	:変性りニ	ンスポン酸化合物	勿ともれーズ	れ一元の複合	SH本(BP社	製)			

*)単位結合材量(B)=単位セメント量(C)+単位フライアッシュ量(FA)

*東日本支社土木技術部 **東日本支社土木第3部 ***技術研究所

トを使用し、水結合材比、または AE 減水剤の添加率に より、流動性の調整を行った。

2.2 流下試験装置

写真-1、写真-2に各シリーズの流下試験装置の外 観、図-2に流下試験シリーズⅡの配管図、および写真 -3に空気孔を示す。流下試験シリーズⅠでは、流下状 況を目視観察するために直径10cmの鋼管を半割りにし た長さ2.8mの傾斜管路を設け、容量50Lパン型強制練り ミキサで製造したモルタルを、1ケース10L流下させた。 また、勾配は35~55°に変化させた。 流下試験シリーズIIでは、直径 10cm、長さ 10.5m、 勾配 45°の傾斜管路を設け、容量 150L パン型モルタル ミキサで製造したモルタルを 1 ケース 200L 流下させた。 なお、配管途中には流下状況観察用の長さ 1m の透明管 を 2 箇所に設置し、鋼管部には 1 m 間隔で内径 18.6mm の空気孔を設置した。

2.3 実験ケースおよび測定項目

表-2に実験ケースを示す。流下試験シリーズIでは、 水結合材比を 50%から 2.5%間隔で 65%まで変化させて 7水準とし、勾配は施工実績から 35°、45°、55°の

図-2 シリーズ I 流下試験装置の配管図

表-2 実験ケース

亜 田	水 準				
安 凶	流下試験シリーズI	流下試験シリーズⅡ			
水結合材比	7 水準 (50、52.5、55、57.5、60、62.5、65%)	60%			
勾 配	3 水準 (35°、45°、55°)	45°			
AE 減水剤量	4水準 (B×0、0.5、1.0、1.5%)	3水準 (B×0、0.5、1.0%)			

表-3 主な測定項目

区分	試験項目	方 法
	スランプフロー	JIS A 1150 コンクリート用コーン
フレッシュ性状	×,,,,,,	JIS A 1171 モルタル用コーン
	ブリーディング率	JSCE-F 522 ポリエチレン袋方法
	流下時間	管路先端での排出終了時刻-到達時刻
	流量	流量=流下モルタル体積/流下時間
流下性能	もりが 室内	配管からかき落とした重量
	付着量 模擬	ロードセルによる流下前後の重量差
	単位付着量	単位付着量=付着量/モルタル密度/管路長
雨化性壮	圧縮強度	JIS A 1108 直径 100mm×高さ 200mm
设旧任扒	静弾性係数	JIS A 1149 直径 100mm×高さ 200mm

写真-1 シリーズ I 流下試験装置

写真-2 シリーズⅡ流下試験装置

写真-3 空気孔

3水準、AE 減水剤の添加率を 0、0.5、1.0、1.5%の4 水準とした。流下試験シリーズⅡでは、水結合材比を 60%、勾配を 45°とし、AE 減水剤の添加率を 0、0.5、 1.0%の3水準とした。

表-3に主な測定項目を示す。流動性については、 コンクリート用コーンとモルタル用コーンによるスラン プフロー、および流量を測定した。材料分離抵抗性につ いては、ブリーディング率およびモルタルの単位付着量 (単位付着量=付着量/モルタル密度/管路長)を測定 した。また、モルタル流下時間は、管路先端での排出終 了時刻から到達時刻(モルタルが管路先端に最初に到達 した時刻)を差し引いた値とした。流量は、流下モルタ ル体積を流下時間で除して算出した。

3. 実験結果

3.1 流下試験シリーズ I

図-3に、スランプコーンの違いによる水結合材比 とスランプフローの関係を示す。モルタルの水結合材比 とスランプフローに線形な関係が見られる。コンクリー ト用コーンの勾配の方が急であり、スランプフローに対 する感度が高いことが分かる。そこで、これ以下はモル タルのスランプフローの測定にコンクリート用コーンを 採用した。

図-4に、モルタル標準配合(水結合材比 W/B=60%)のAE減水剤の添加率を変化させた場合の スランプフローおよびブリーディング率、図-5に、 AE減水剤の添加率と鋼管への単位付着量を示す。図-4より、AE減水剤の添加率の増加に伴いスランプフ ローも増加しており、添加率によって流動性を調整でき ることを確認した。一方、ブリーディング率は、AE減 水剤の添加率が1.0%以上で増加傾向を示しており、添 加率2.0%のスランプフロー700mmでは細骨材が材料分 離することを目視により確認した。また、図-5より、 AE減水剤の添加率の増加に伴い、単位付着量は減少す るが、添加率1.0%以上での付着量の減少割合は小さく、 添加率0.5%で十分な付着量低減効果が得られることが 分かる。

AE減水剤0% 600 コンクリート用コーン 500 Ĩ 400 Ċ 300 モルタル用コーン Ē у Л 200 ١D 100 к 0 45 50 55 60 65 70 水結合材比 W/B(%) 図-3 水結合材比とスランプフロー(シリーズ I) W/B=60% 800 8 8 700 7 スランプフロ 漸 E 6 600 リーテ、ィンケ Т 5 500 Ġ 400 4 プ 間後のブ 3 300 ン 2 200 ディ ID 100 1 к 33年| 0 0 0.0 0.5 1.0 1.5 2.0 AE減水剤の添加率(%) 図-4 AE 減水剤添加率とスランプフローおよび ブリーディング率(シリーズI) W/B=60% 0.4 勾配35° 🖲 0. 3 位付着量 (L, 0.2 0.1 漸 勾配45 0 0.0 0.5 1.0 1.5 2.0 AE減水剤添加率(%) 図-5 AE 減水剤添加率と単位付着量(シリーズ I) W/B=50~65% 0.4 閉塞←流下境界 →流下 W/B=55% W/B=57.5% 位付着量 (L/m) 0.3 35° Þ 0.2 0.1 渆 45° 勾配55° 0

400

スランプフロー(mm)

500

600

300

200

図-6に、水結合材比を 50~65%に変化した場合の スランプフローと単位付着量を示す。勾配が大きくなる にしたがって単位付着量は減少している。また、勾配 35~55°の流下状況は、水結合材比 57.5~65%のスラ ンプフロー400mm 以上で液体状に自然流下し(写真-4)、水結合材比 50~55%のスランプフロー400mm 未 満では塊状に滑り落ちた(写真-5)。これらの実験結 果から、勾配 35~55°の場合、スランプフロー400mm 未満のモルタルは、閉塞の可能性があると判断した。

3.2 流下試験シリーズⅡ

a. 流下前後の性状

写真-6にモルタルの流下状況、写真-7に透明管 のモルタル付着状況、写真-8に透明管の磨耗範囲を示 す。勾配 45°で、標準配合を含む水結合材比 60%のス ランプフロー450~600mm のモルタルは若干の脈動が見 られるものの、閉塞もなく、スムーズな流下状況が確認 できた。また、勾配 45°のモルタルの管内流下高さは、 透明管のモルタル付着状況および磨耗範囲から、直径 10cm に対して4 cm であった。

図-7に勾配 45°、管路径 10cm、管路長 10.5m の傾 斜管路にモルタルを3回流下した場合の流下前後のスラ ンプフロー、写真-9に流下前後のスランプフロー試験、 図-8に流下前後の圧縮強度を示す。流下後のスランプ フローは、流下前に比べて小さくなっている。また、標 準配合に比べて AE 減水剤を使用したスランプフローの

写真-5 塊状滑り状況(シリーズ I)

写真-6 モルタル流下状況 写真-7 透明管付着状況

方が、減少割合が大きくなっている。しかし、AE 減水 剤使用配合の流下後のスランプフローは、標準配合の流 下前よりも大きな値を示しており、良好な流動性および 施工性を有していると考えられる。

図-8より、流下後の圧縮強度は、材齢の経過に 伴って順調に強度発現し、流下前の圧縮強度の 0.95~ 1.00倍とほぼ同程度の値が得られた。このことから、流 下によるモルタルの強度低下はほとんどないことを確認 した。

b. 空気孔の影響

図-9に空気孔数と単位付着量、図-10 に空気孔数 と流量を示す。単位付着量は、ロードセルによる流下前 後のモルタル重量差を、モルタル密度と管路長で除して 算出した。図-9より、空気孔数の増加に伴い、単位付 着量は 40%程度減少している。また、スランプフロー が大きいほど単位付着量が少ないことが分かる。

一方、図-10 より、流量は空気孔数に関係なく、ほ ぼ一定の値を示しており、スランプフローが大きいほど 流量も増加していることが分かる。これらは、自然吸気 により大気圧に対する流下時の負圧が低減し、モルタル の流速の増加と流下断面積の減少が生じたことに起因し ていると考えられる。

c. 単位付着量と流量

図-11 にスランプフローと単位付着量、図-12 にス ランプフローと流量を示す。図-11 より、AE 減水剤の 添加によりスランプフローを増加させることで単位付着 量は減少し、スランプフロー500mm 以上で、単位付着 量は 0.35L/m 程度とほぼ一定の値を示していることが分 かる。同様に図-12 より、スランプフローの増加に伴 い流量は増加し、スランプフロー500mm 以上で、流量 は 0.5m³/min 程度とほぼ一定の値を示していることが分 かる。また、AE 減水剤を使用しない水結合材比 60%で スランプフロー450mm 程度の標準配合に比べて、AE 減 水剤を 0.5%以上添加したスランプフロー500mm 以上の 配合のモルタルが、単位付着量の減少と流量の増加が得 られる良好な結果となった。

図-13 に勾配 45°の管路径と推定単位付着量の関係、 図-14 に勾配 45°の管路径と推定流量の関係を示す。 ここでは、管路径が変化してもモルタルの管内流下高さ (写真-8参照、管路径の 0.4 倍)、単位周長当たりの 単位付着量および単位断面積当たりの流量は一定の値を 示すと仮定し、図-11 および図-12 の実験結果から管 路径 10cm の単位付着量を 0.35L/m、流量を 0.5m³/min として、単位周長当たりの単位付着量および単位断面積 当たりの流量を算出した。その後、管路径の関数として 推定単位付着量(下記の式(1))および推定流量(下記 の式(2))を求めた。

$$V = 3.49 \times 10^{-2} \,\mathrm{D} \tag{1}$$

$$Q = 5.00 \times 10^{-3} D^2$$
 (2)

ここに、 V:推定単位付着量(L/m) Q:推定流量(m³/min) D:管路径(cm)

次に、施工実績からケーブルクレーンのモルタル1回 当たりの往復運搬時間は 10 分程度とした場合、アジ テータ車1台4m³の流下時間を片道分の5分と仮定す ると、モルタル流量は0.8m³/min 必要となり、図-14よ り、運搬に必要な管路径は 12.5cm 程度で良いことが分 かる。これにより、実施工における設備規模の目途が付 いた。

4. まとめ

モルタルパイプシュートの実施工への適用を目的にモ ルタルの流下試験を行い、以下の事項が明らかになった。 i. モルタルの流動性を評価するスランプフローの測

定に感度の良いコンクリート用コーンを採用した

- ii. 水結合材比 57.5~65%、スランプフロー400~
 600mm のモルタルは自然流下した
- iii.既存配合を含む水結合材比 60%のモルタルでは、 スムーズな流下状況と流下前後の良好な品質確保が 確認できた
- iv. 自然吸気させることで、モルタルの単位付着量の 低減効果が得られた
- v. スランプフロー450mm 程度の既存配合に比べて、 AE 減水剤を 0.5%添加した 500mm 以上の配合の方 が流下後のスランプフローの確保および単位付着量 の減少と流量の増加が得られ、優れた流下特性を示 した
- vi. 管路径と推定単位付着量、および推定流量の関係 を算出し、実施工に必要な管路径が得られた

5. あとがき

モルタルパイプシュートでの流下試験の結果、既存の モルタル配合を基本としてスランプフローを 500~ 600mm に調整すれば、所要の流下性能および品質が確 保され、実施工に十分適用可能であることが分かった。 今後、これらの結果をもとに管内洗浄方法、管内磨耗対 策等の施工上の工夫を加え、技術提案への活用および実 工事への普及展開を進めていきたい。

【参考文献】

 廣中哲也、新出栄一、戸澤清浩、小野 剛、大松彰
 吾、石井敏之、「傾斜配管を自然流下させたダムモル タルの流下特性」、土木学会第 63 回年次学術講演会 講演概要集第6部門、pp.563-564、2008.9
軌道騒音防止システムの開発

ーウレアウレタン樹脂と防音パネル併用による騒音防止対策-

Development of Railway-noise Reduction System

- Noise Prevention Measures by Combining Urea-urethane Resin and Soundproofing Panel -

森本克秀* 稲留康一** 塚本耕治** 津田晃宏***

要旨

市街地に位置する鉄道鋼製桁は、列車走行時の騒音がコンクリート桁と比べて大きく、騒音が問題となっ ている地域もある。防音壁等の設置は騒音対策に有効であるが、自重や風荷重による既設鋼製桁の構造的な 負担を大きくする対策法の採用は難しい。これまでに実施した既設鋼製桁のウェブにウレアウレタン樹脂を 塗布する試験施工により一定の騒音低減効果を得た。本研究ではさらなる騒音低減を目的として、開床式の 鉄道鋼製桁へ水平方向に使用できる防音パネルを開発し、前述の対策工に併用することで基準点において最 大 4.5dB の騒音低減効果を得た。

キーワード:鉄道橋梁、鋼製桁、騒音、ウレアウレタン樹脂、防音パネル

1. まえがき

鉄道鋼製桁はコンクリート桁に比べて列車走行時の騒 音が大きく、住宅が近接する市街地では騒音問題となっ ている地域もある。一般軌道の騒音防止対策には、レー ルやまくら木からの振動・騒音を抑制する方法、砂利 (バラスト)布設やロングレール、弾性材によるまくら 木支持などの軌道構造を改良する方法が採用されている。 これに対し、鉄橋部の防音対策には周辺に遮音壁を設置 する対策が効果的であるが、既設鋼製桁の重量増や風荷 重増加など構造的に負担を大きくする対策の適用は難し い。このような対策は、新線建設時に採用されるに止 まっている。

一般的な鋼製桁における主な騒音源には、レールと車 輪の接触による転動音、鋼製桁の振動に伴い発生する構 造物音、開床式では転動音と構造物音が桁下から廻り込 む騒音(廻り込み音)がある。構造物音を抑制する方法 としては、磁性制振ゴムを桁ウェブに貼り付ける方法も あるが、桁重量が大きくなり、さらに脱落の危険性から ウェブに穴を開けてボルト締めが必要な場合もあり、桁 に対する構造的負担が大きい。

一方、平成 13 年に実施した試験施工では、鋼製桁に ウレアウレタン(以下、UU と表記)樹脂を塗布する工 法を実施すると、基準点(軌道中心から 12.5m 離れ、 地表面から 1.2m の位置)で2dB 程度の騒音低減効果を 確認している¹⁾²⁾。UU 樹脂は、磁性制振ゴムよりも軽 く、鋼材への付着性と防食性に優れており、制振機能が あるので構造物音抑制に対して有効である。桁下からの 廻り込み音や転動音に対しては、桁下や軌道横に防音パ ネルを設置すれば、さらに騒音低減効果が向上すると期 待できる。構造物音以外の騒音には防音パネルが有効で あるとの考えに基づき、開床式の鋼製桁において、UU 樹脂の塗布と防音パネルを併用した総合的な騒音対策シ ステムの開発を行った。

2. Ш 樹脂による制音効果

構造物音の抑制に使用する UU 樹脂は、表-1 に示す 基本性能を持ち、遮水性、遮塩性に優れ、鋼材に対して 高い付着力を有する樹脂であり、これまでコンクリート 構造物の防水、防食に用いられてきた。鋼材への付着力 が大きい弾性体であることから、鋼製桁に対する制音効 果があると考え、室内試験を経て実橋において確認試験 を行った。

室内試験では、厚さ9mmの母材の両側に5mmの塗 膜を行うと5dBの制音効果があると予想されたが、実 橋による試験では基準点において2dB程度の騒音低減 効果であった。同方法では構造物音を低減できるが、転 動音と桁下からの廻り込み音を抑制することができない ので、これらを抑制する方法が必要であった。

	項目	結果		
	引張強度	10	(MPa)	
基本	伸び率	500	(%)	
平物	引裂強度	500	(N/cm)	
性	比重	1.08		
	ゲルタイム	20	(sec)	
	耐酸性試験	異常なし		
	耐アルカリ試験	異常なし		
性	付着力試験			
能	コンクリート	2.3	(MPa)	
	鉄板	4.4	(MPa)	
	塩素イオン透過試験	0.0007以下	$(mg/cm^2 \cdot \exists)$	

表-1 UU 樹脂の基本性能

3. 防音パネルの開発

鉛直方向に適用する防音パネルには既製品があるが、 水平方向に適用する防音パネルは市販されていない。後 者のパネルは、廻り込み音を遮音および吸音するもので あるが、鉛直方向に使用する場合よりも降雨による影響 を受けやすい。このため、一定量以上の雨水の蓄積によ り重量が増加しない、降雨後に滴下しないといった仕様 が求められたので、これに適合する防音パネルの開発を 行った。さらに、桁下を通行する車両からの走行音が反 響しないようにする必要があるため、両面に吸音材を設 置する構造を採用した。

3.1 パネルの構造

防音パネルとして、排水性と遮音・吸音性を重視した TYPE-A、透水性と吸音性を重視した TYPE-B を考案し た。TYPE-A は、1.2mm 厚鋼板の遮音板の両端を折り曲 げて両側に排水溝と下面に空気層を形成し、その上下面 に吸音材を設置して、遮音を重視しつつ吸音機能を有し た構造とした(図-1 参照)。吸音材をフッ素樹脂 フィルムで覆い、低密度ポリエステル繊維が吸水するこ とを防止している。

図-1 排水型遮音パネル (TYPE-A)

TYPE-B は、遮音層の高密度ポリエステル繊維を吸音 層の低密度ポリエステル繊維で挟み込んだ構造とした (図-2 参照)。ここで使用するポリエステル繊維は、 水平方向に使用した場合でも排水しやすいように織り方 が工夫されたタイプを使用した。両タイプとも上下の外 面を穴あき鋼板(パンチングメタル)で覆っている。

図-2 透水型吸音パネル (TYPE-B)

3.2 基本性能試験

製作した防音パネルの遮音、吸音に対する性能を確認 するため、実験室における音響透過損失試験と残響室法 吸音率試験を実施した。音響透過損失試験は、JIS A 1441-1:2006 「音響インテンシティレベル法における建 築物および建築部材の空気遮断性能の測定方法一第1 部:実験室における測定」に基づき、残響室内スピー カーよりピンクノイズを発生させ、その時の半無響室側 試料より 0.1~0.3m 離れた位置のインテンシティレベル の測定を行った。インテンシティ音響透過損失 R_I は、 音源室内で測定した室内平均音圧レベルと隣接する受音 室で測定したノーマルインテンシティレベルから計算す る音響透過損失で、次式から求まる。

$$\mathbf{R}_{1} = \mathbf{L}_{\mathrm{Pl}} - 6 - \left[\overline{\mathbf{L}}_{\mathrm{In}} + 10\log_{10}\left(\frac{\mathbf{S}_{\mathrm{M}}}{\mathrm{S}}\right)\right]$$
(1)

ここで、

L_{Pl} :音源室における室内平均音圧レベル [dB]

- S_M : 測定面の総面積 (m³)

S :測定対象の資料の面積(m²)

残響室法吸音率の測定は、体積 314.6m³、表面積 257.8m²の残響室において約 10 m²の試験体を床面に設 置して実施した。JIS A 1409「残響室法吸音率の測定方 法」に準じ、試験体ごとの残響時間および空室時の残響 時間を測定し、計算により吸音率を算出した。

TYPE-A、B 両防音パネルの音響透過損失を図-3に、

残響室法吸音率を図ー4に示す。TYPE-Aのパネルは、 遮音板に鋼板を使用していることもあり、中高周波数帯 域で高い透過損失を示している。残響室法吸音率では、 上下面吸音材の背後空気層厚さが異なるため、低周波数 帯では上面、中高周波数帯では下面で吸音率が向上して いる。また、吸音材の厚さが小さいため、TYPE-B の防 音パネルと比べると吸音効果が中高周波数帯で小さく なっている。

TYPE-B の防音パネルは、遮音板に高密度ポリエステ ル繊維を用いており、鋼板に比べ密度が小さいことから、 透過損失は全周波数帯で小さくなっている。その一方、 中詰めのポリエステル繊維全体が吸音効果を発揮するた め、吸音率は中高周波数帯において優れた性能を示して いる。

3.3 防音パネルのたわみおよび排水試験

防音パネルを水平方向に使用する場合には、防音パネ ル兼通路としての使用、および降雨時の吸水による重量 増加が考えられる。このため、所定荷重に対するたわみ 試験と降雨を想定した滞水試験を行った。

防音パネルのたわみ試験では、2点支持状態で足場の 想定荷重 110kg/m² (実際には 120kg/m² を載荷)の載荷 時に L/200 以下(L はパネルの全長=1.5m)であること を確認した。試験の結果、各防音パネルの最大たわみ量 は、TYPE-A が 3.23mm、TYPE-B が 2.28mm となり、許 容値(7.5mm)以下であった。

吸水による重量増加に対する確認試験は、均等に散水 できる試験装置を製作し、降雨を想定した散水を行いな がら、図-5に示す方法で防音パネル重量の変化を測定 した。なお、TYPE-A の吸音材はフィルムで被覆されて おり、散水後には直ちに排水されることを確認したので、 同試験を省略した。

図-5 散水試験装置の概要

散水量は強雨を想定した 128mm/hr とし、防音パネル 重量が定常状態になるまで散水した後、散水を停止した。 重量の測定の結果を図-6に示す。散水開始から 1000 秒後(17分後)に、防音パネルの重量は9kgから15kg に増加し定常状態になった。散水停止後に2kg まで減 少するが、その後はほぼ一定の重量である。

128mm/hr 散水時のパネル重量変化

確認試験の結果より、当該防音パネルは、載荷重によ るたわみが許容値以下であり、通常の使用には問題ない ことを確認した。TYPE-B の防音パネルは、通常の降雨 では増加量が4~6kg であり、その後も滴下がないこ とが明らかになった。さらに、滴下がない状態での重量 減から、滞水の蒸発によって2日後にはほぼ元の重量に 戻ると予測される。以上のことから、1500W×500W× 50H(mm)サイズで9kg の TYPE-B は、重量制限のため 15kg の TYPE-A よりも重量増を抑制したい場合に有効 である。

4. 実橋試験における騒音低減効果の確認

4.1 実橋における騒音測定

a. 目的

実橋における実証試験として、供用中の橋梁(桁長 13.4mの上路鋼鈑桁)に開発した防音パネルを設置し、 騒音・振動測定を実施した。この橋梁において、平成 13 年に鋼製桁の制音を目的として UU 樹脂(5mm 厚)を桁ウェブ両面に塗布する試験施工を実施している。 今回の実証試験は、防音パネルの騒音低減効果を目的と するものであるが、これまでの UU 樹脂による騒音低減 効果も併せて効果の検証を行った。

b. 測定方法

防音パネルの設置パターンを図-7に示す。桁下フラ ンジ上に開発した2種類の防音パネル、軌道横に工事騒 音対策に用いられる一般の防音パネルを用い、無対策時 と各組合せ時の測定値の差から騒音低減効果を確認した。 測定は、桁中央部の橋軸直角断面において図-8に示す 5測点で行った。できるだけ測定条件が平均化されるよ う、各測定を行う5日間にわたり平日の同一時間帯に 30本の電車騒音を測定し、そのうち騒音レベルが最大 値の上位20本を評価対象とした。

- 測点1: 軌道中心から12.5m 位置(GL+1.2m)
- 測点2: 桁下開口中心位置(桁・下フランジ-1m 位置)
- 測点3: 桁ウェブから1m位置
- 測点4: レール近傍位置(まくら木端部から 1.5m 位置 でまくら木と同じ高さ)
- 測点5:上り線と下り線の間(まくら木の同じ高さに設置し、対策時の相互比較用の基準値とする)

図-8 測定点位置図

c. 各対策の測定結果

基準点(測点1)における各対策ごとの測定データ のうち、騒音レベル最大値の上位 20 列車を対象として A 特性音圧レベルを求めた。測定ケースごとのデータか ら求めた A 特性音圧レベルについて、測点5(桁間) における無対策時と各対策の差を図-9に示す。

上下線の中間に位置する測点5における低減量は、測 定日ごとに異なる通過列車の種類や速度の影響を受けて おり、防音パネルからの反射等の影響をほとんど受けて いないと考えられる。すなわち、音源が同じであればど の測定ケースでも同じ騒音レベルになるので、測点5の 増減量に基づき測点1~4の測定値を補正した数値を表 -2に示す。これらの値は、すでに UU 樹脂による制音 対策が実施されているため、防音パネルのみによる低減 効果である。

図-9 測定値(測点5)の増減

表-2 防音パネルによる対策低減効果

	測点位置					
設置パターン	測点1 (基準点)	測点2 (桁下)	測点3 (桁横)	測点4 (軌道横)		
2	0.5	5.2	0.9	0.5		
3	0.5	6.1	0.7	0.1		
4	2.2	5.2	0.4	4.1		
5	2.6	6.4	0.9	4.6		
				W//L 15		

単位:dB

測点2(桁下)では、桁下の防音パネルによる構造物 音や転動音が遮音されるため、最も低減効果が大きい。 遮音効果の大きい TYPE-A を使用したときに、この傾 向はより顕著である。測点4(軌道横)では、軌道横の 防音パネルが設置されたときには転動音が遮音されるた め、低減効果が大きくなっている。測点1(基準点)で は、橋梁の高さが地上より 3.5m と低いこともあり、桁 下よりも軌道横の防音パネルの影響がより大きく現れて いる。

4.2 測定データの基づく騒音源の推定

列車走行に伴う鋼製桁からの騒音源は、列車走行に伴 う転動音、各種構造物から発生する構造物音などである。

図-7 設置パターン

今回の実橋試験で対象とした橋梁(上路鋼鈑桁)では、 主な騒音源はレール振動から発生する転動音と、鋼製桁 ウェブの振動から発生する構造物音であると考えられる。 対策工の効果をシミュレーションすることを目的に、参 考文献³⁴の音源分離の方法を参考にして以下の方法に より各音源を推定した。転動音の音源位置は、軌道中央 でレール高さとした。構造物音の音源中心位置は、水平 方向を軌道中央、鉛直方向を縦桁高さの1/2 とした。音 源の推定は、列車の転動音と構造物音の音源を測点2お よび4の音圧レベルから推定する。

図-10 音源と測定位置の関係

音源を (=1;転動音源、=2;構造物音源)、受音点を (=1;レール近傍、=2;桁下直下)で表す。各音源で 発生し、受音点に伝播される騒音は音響伝搬特性を考慮 して次式で与えられる。

$$L_{pij} = L_{wj} + \Delta L_{ij}$$
(2)
$$\Delta L_{ij} = -8 + 10 \log \left[\frac{2}{r_{ij}} \tan^{-1} \left(\frac{1}{2r_{ij}} \right) \right] + \Delta L_{dij}$$
(3)

ここに、

 L_{pij} : 音源別騒音レベル (dB) L_{wj} :線路方向単位長さあたりの線音源パワーレベル (dB/m) r_{ij} : 音源 j と受音 i 点間距離(m) 1 :線音源の長さ、列車長 (m) ΔL_{dij} : 障害による減音量 (dB)

無対策時の標準的と思われる特定の列車騒音のデータ を用い、周波数ごとに式(2)(3)より音源として転動音、 構造物音に対するパワーレベルを推定した結果を図-11 に示す。

推定した音源は、測点2および4の騒音レベルと類似 した特性を示している。

4.3 計算による周辺騒音レベルの推定

前章で求めた音源パワーレベルを基に、逆音線法によ るシミュレーションを行い、基準点における音圧レベル の計算を行った。モデル化は、橋台や鋼製桁などの構造 物を設定せずに、音源および防音パネルだけを考慮した 疑似3次元モデルとした。音源は、橋長に等しい構造物 音、列車長(8両編成)に等しい転動音を有限長の線音 源として与えた。

無対策時の測点1における A 特性音圧レベルについ て、計算値と測定値の比較を図-12 に示す。音圧レベ ルは、全周波数にわたってほぼ一致しており、オールパ ス値では両者の差は1.9dB である。無対策時の計算値は、 近接する測点の測定値から求めた音源を基にシミュレー ションしているため、影響が距離減衰に限定され、比較 的測定値とよく一致したと考えられる。

図-12 計算値と測定値の比較

今回のような無対策時のシミュレーションでは、ある 程度実際に近い結果を得ることができた。しかし、防音 パネル設置時には、鋼製桁や周辺構造物の反射や吸音な どを反映した3次元のモデル化が必要と考えられる。今 後、前章で求めた転動音および構造物音をもとに、実態 を3次元モデルで反映できるシミュレーションにより、 対策工実施前に各対策工の効果を把握できるようにした い。

5. 騒音低減効果の推定について

これまでに実施した下り線の鋼製桁のウェブに UU 樹 脂を塗布した実橋試験では、実際に UU 樹脂が構造物音 の低減に寄与した結果、測点1(基準点)において片面 塗布時 1.7dB、両面塗布時には 1.9dB、桁下では 2.3dB の騒音低減効果が得られた。一方、今回の実橋試験では、防音パネルは UU 樹脂が施工された状態から、主に転動 音の低減に寄与した結果、基準点(測点1)で表-2に 示す効果が測定された。したがって、UU 樹脂がない状 態から防音パネルを施工すると、このときの低減効果は 表-2を若干上回るものと予想される。

今回の実橋試験の低減効果である表-2は防音パネル だけの効果であるので、全くの無対策から UU 樹脂を ウェブ両面に塗布し、防音パネルを設置した場合には、 両者の効果を加算した値になると考えられるので、騒音 低減効果は表-3のように推定できる。表-3の推定値 は、今回実橋試験を行った橋梁において推定した数値で あり、条件が異なる場合には異なる効果が得られるが、 他物件に適用する上での参考値になるものと考えられる。

	推定低減効果		
対策種別	基準点 (桁中心から 12.5m高さ 1.2m)	桁下直下 (桁中心の桁 下1.0m)	
無対策	—	—	
UU片面(t=5.0mm)	1.7	2.8	
UU両面(t=5.0mm×2)	1.9	3.0	
UU両面+桁下(TYPE-A)	2.4	8.2	
UU両面+桁下(TYPE-B)	2.4	9.1	
UU両面+桁下(TYPE-A)+軌道横	4.5	8.2	
UU両面+桁下(TYPE-B)+軌道横	4.1	9.4	
		半生 11	

表-3 各対策の騒音低減効果

6. まとめ

本研究において開発した防音パネルについて、以下の 見解を得た。

- i. TYPE-A のパネルは遮音性に優れ、TYPE-B は吸 音性に優れており、パネル重量も考慮して使用条件 によって使い分ける必要がある
- ii.載荷重によるたわみは許容値(L/200:L はパネ ル全長)以下であり、防音パネル兼通路として使用 できる
- iii. TYPE-B の防音パネルは降雨量に応じて滞水量が 増加するが、通常の降雨では増加量は4~6kg 程 度であり、その後も滴下がないため、使用上の問題 はない

実橋試験における測定、およびこれらを基にしたシ ミュレーションによる検討を行い、以下の知見を得た。

- i.防音パネル設置前であれば、桁下と軌道横の測定 データから音源を推定し、逆音線法によるシミュ レーションから基準点の音圧レベルをオールパス値 1.9dB 程度の差で推定できる
- ii. 現段階ではシミュレーションで防音パネルの騒音

低減効果を検証できないので、実橋試験で把握した 騒音低減効果を参考に、各対策の騒音低減効果を推 定するのが妥当である

 iii. UU 樹脂、および今回開発した防音パネルを併用 すれば、一事例ではあるが基準点において最大4~
 4.5dB 程度の騒音低減効果が得られることを確認で きた

7. あとがき

本報告は、市街地にあるため騒音低減が問題となる橋 梁を想定しているが、実際には橋長や橋梁の設置高さだ けでなく、舗装の有無、車両の通行、並びに建物の近接 度合いなどの周辺環境の違いにより効果は異なると考え られる。今後、条件の異なる橋梁に同工法を適用して実 績を蓄え、詳細にモデル化できるシミュレーションと測 定結果の比較から、騒音低減効果を推定できるようにし たい。

また、水平方向に使用する防音パネルの実績が少ない ため、耐久性や性能変化を観察する目的で、試験を実施 した橋梁に防音パネルを存置しており、今後も経過を観 察していく予定である。

なお、防音パネルの開発にあたっては、栗本鐵工所お よびクリモトテクノスとの共同研究により実施した。

謝辞

実橋試験の場を提供して頂いた阪急電鉄には、この場 を借りてお礼を申し上げます。

【参考文献】

- 上田宗市、中川、西山、稲留、「ウレアウレタン樹 脂の塗装による鋼製桁の騒音対策」、第 59 回年次学 術講演概要集、IV pp. 209-210、2004
- 2)西山宏一、稲留、上田、中川、「ウレアウレタン樹 脂の騒音対策への適用に関する室内実験」、第59回 年次学術講演概要集、VI pp. 665-666、2004
- 北側敏樹、長倉、緒方、「在来鉄道における騒音予 測手法」、鉄道総研報告、No. 12、pp. 41-46、1998
- 半村征規、杉本、長倉、「鋼構造物騒音の部材ごとの寄与度解析および対策材料の検討」、RRR、pp.14-18、2007.2

単位:dB

自然由来の重金属を含むずりの処理技術に関する研究

Study on Processing Approach of Mucks Containing

Heavy Metals of Natural Origins

三澤孝史* 白石宏彰* 今泉和俊* 丸山 悠**

要 旨

人為的活動による土壌汚染を対象とした「土壌汚染対策法」の施行(H15年2月)以降、建設行為により 発生した自然由来の重金属類を含有する掘削ずりに対しても対策措置を要求される機会が増加している。重 金属類を含有する掘削ずり対策として、従来の遮水シートによる封じ込めに代わり、不溶化および吸着によ り重金属類の溶出を抑制する方法に関する、知見の蓄積を目的に不溶化剤および吸着剤について性能評価を 行った。また、重金属類の溶出の抑制対策が必要か否かを判別する土壌溶出試験は長時間を要するため、判 別の簡易化(迅速化)を試みた要素試験結果についても述べる。

キーワード:重金属、自然由来、岩石、溶出

1. まえがき

人為的活動による土壌汚染を対象とした「土壌汚染対 策法」の施行(H15年2月)以降、建設行為により発生 した自然由来の重金属類を含有する掘削ずりに対しても、 対策を要求される機会が増加している。現状では、シー トによる遮水等の管理型処分場構造に準じた埋立てが主 であるが、不溶化処理(薬剤で環境基準以下に処理)、 吸着による重金属類の溶出抑制処理等が実施されるよう になっている。しかし、前者ではコスト、後者では効果 の永続性などに課題があることから、経済的かつ効果的 な溶出対策技術の確立が望まれている。

人為由来の土壌汚染の場合は、有害物質が土粒子に吸 着あるいは地下水中に溶存している。これに対し、自然 由来の場合は、重金属類が成分として岩に存在し、酸素 と水の存在により重金属類が溶脱する。どの程度の含有 量が自然由来かは、河川堆積物を分析、整理した今井ら ¹⁾の「日本の地球化学図」により、自然起源(地質的要 因)の元素によるバックグラウンド値で評価することが できる。

地殻における重金属の代表的な存在形態は硫化物である²⁾。例えば、砒素の場合、岩石中では硫砒鉄鉱

(FeAsS)として存在し、酸化反応により鉄が遊離し、 砒素が溶出すると考えられる。自然由来の場合、その分 布は地質に大きく依存し、トンネル工事等では重金属を 含む掘削ずりが大量に発生する場合がある。したがって、 自然由来の重金属を含有する掘削ずりでは、比較的、局

*技術研究所 **東日本支社環境技術部

地的な人為由来の土壌汚染の場合よりも、より合理的な 対策が求められる。

本報では、重金属類を含有する掘削ずりからの重金属 類の溶出対策技術として、不溶化および吸着処理に着目 し、不溶化剤および吸着剤の性能の評価を目的とした バッチ試験結果について述べる。本研究では、土壤環境 基準において有害物質として指定されている重金属類で ある砒素(As)、鉛(Pb)、セレン(Se)およびふっ素 (F)を対象とした。

また、基準値以上の重金属が溶出し、掘削ずりの処理 の必要性に関する判別は、環境省告示第 18 号法(平成 15 年3月6日)による土壌溶出試験(以下、公定法と 記す)によることと定められている。通常、分析機関に 依頼すると公定法の分析結果が出るまで 10~14 日間程 度を要する。そのため、それまでは掘削ずりを仮置きし なければならず、仮置き場の確保が必要になる。また、 施工の迅速性からも、分析方法の簡易化(迅速化)が期 待されている。本報告では、掘削ずりについて、重金属 類の溶出濃度の簡易分析法について試みた要素試験結果 についても述べる。

2. 有害ずり対策に関する検討

基準濃度を超える重金属類が溶出する掘削ずりは、重 金属類が周辺に拡散しないように対策を講ずることが必 要である。これまでは、遮水シートにより封じ込める方 法が一般的に行われてきた。この方法は、シートの破損 や接合部に不具合がなければ、確実に掘削ずりを封じ込め、重金属が周辺に拡散することを防止できる。しかし ながら、施工費が比較的高いことが課題である。

これに対し最近では、掘削ずりを不溶化処理する方法 や掘削ずりの底部に、溶出した重金属を外部へ拡散させ ないように重金属を吸着する吸着層を設置する方法が取 られるようになってきた(図-1~3参照)。吸着層は、 現地発生土に重金属の吸着剤の必要量を添加し、混合し て作成される。有害ずりから溶出する可能性がある重金 属量に応じて、吸着剤の添加量、吸着層の厚さを設定す る。

この方法は、シートによる封じ込めに比べ、比較的安 価であり、今後もさらに適用が進むと思われる。しかし ながら、不溶化剤の不溶化性能、吸着層(吸着剤)の吸 着性能や吸着層の設計方法等、さらに明確にするべき点 がある。

今回、吸着剤の吸着性能および不溶化剤の不溶化性能 を把握するために、幾つかの既往の吸着剤、不溶化剤に ついて性能確認実験を行った。

2.1 吸着性能確認実験

模擬の重金属溶液および実際の掘削ずりからの溶出液 を用いて吸着性能確認実験を行った。対象とした重金属 は、砒素、鉛、セレン、ふっ素とした。

a. 吸着性能確認試験の試験方法

表-1に示す各試薬を用いて所定濃度の模擬の重金属 溶液を作成した。

掘削ずりからの溶出液については、振とう時の固液比 を1:10 および1:3と変え、重金属濃度が異なる2 ケースの溶液を作成した。表-2に、作成した溶出液の 重金属濃度を示す。

吸着性能確認試験の方法を以下に示す。試験方法は、 国土交通省土木研究所の官民共同研究「地盤環境保全型 建設技術の開発」³⁰の中で行った試験方法に準拠した。

吸着層は、市販の園芸土に所定の各吸着剤を添加、混 合して作成した。

【吸着性能確認試験の方法】

- i. 模擬の重金属溶液 300ml を三角フラスコ(容量 1000ml)に入れ、その中に吸着層を 30g 添加し、振とう機で4時間振とう(200rpm、振とう幅4~5 cm、常温、常圧)する
- ii. 振とう終了後、遠心分離(3000rpm、20分)し、
 0.45µmのメンブレンフィルターで溶液をろ過する
- iii. ろ液の pH、EC (電気伝導率)、ORP (酸化還元 電位)、SO₄⁻濃度、各重金属等を測定する
- b. 吸着性能確認試験結果

図-4に、模擬の重金属溶液を用いた吸着性能確認試 験結果の一例として、セリウム(Ce)系の吸着剤Aを 所定量添加した時の砒素に関する平衡液相濃度と吸着量 の関係を吸着等温線として示す。図中には、掘削ずりか

図-1 二重シート工法の概念図

図-2 吸着層工法の概念図

図-3 不溶化工法の概念図

表-1 作成した模擬重金属溶液

重金属	試薬	濃度(mg/l)
砒素	KH ₂ AsO ₄	0.02, 0.1, 0.5
鉛	PbCl ₂	0.02, 0.1, 0.5
セレン	H ₂ SeO ₃	0.02, 0.1, 0.5
ふっ素	NaF	0.16, 0.8, 4.0

表-2 試験に用いた掘削ずり溶出液の濃度

	項目	溶出濃度
		(mg/l)
溶出液1	砒素及びその化合物	0.029
(固液比	鉛及びその化合物	0.005 未満
1:10)	セレン及びその化合物	0.003
	ふっ素及びその化合物	0.62
溶出液2	砒素及びその化合物	0.05
(固液比	鉛及びその化合物	0.005 未満
1:3)	セレン及びその化合物	0.015
	ふっ素及びその化合物	2.10

らの抽出液の値も示している。

この吸着等温線より、例えば、溶出濃度を基準値 0.01mg/1 以下に抑えようとすると、平衡液相濃度 0.01mg/1 における吸着量が約 0.4mg/1 であるので、この 吸着量より、安全率を考慮して吸着層の層厚を設定する ことができる。 また、掘削ずりからの抽出液の場合、溶出液1(固液 比1:10)では模擬の重金属溶液から得られる吸着量と 大きな差はないが、溶出液2(固液比1:3)では吸着 量は小さくなる。これは、他の重金属の影響により、吸 着性能が低下するためと考えられる。

2.2 不溶化性能確認試験

現場より採取した掘削ずりを用いて不溶化性能確認試 験を行った。

a. 不溶化性能確認試験の試験方法

試験に用いた試料は、掘削ずりを粉砕して風乾後、2 mm アンダーにふるった。図-5に試料の粒径加積曲線 を示す。表-3に主な土質性状を、表-4に重金属に関 する性状等を示す。掘削ずりと不溶化剤を混合してから 24時間後に試験した。

不溶化性能の確認試験においては、溶出試験の他に、 不溶化処理土の安定性を評価するために(社)土壤環境セ ンターが提案⁴⁰している硫酸添加溶出試験 I と消石灰添 加溶出試験 I を行い、長期的な不溶化性能を把握した。 b. 不溶化性能確認試験結果

図-6に不溶化性能確認試験の一例として、無機系不 溶化剤の添加量と溶出濃度の関係を示す。

不溶化剤を添加しない場合、0.04mg/l 程度の溶出濃度 を示す試料に対し、添加量 50kg/m³以上で砒素の溶出濃 度は砒素の溶出基準 0.01mg/l 以下になっている。

図-4 吸着剤Aの砒素に関する吸着等温線

図-5 不溶化性能確認試験に用いた試料の粒度分布 (2mm ふるい後)

	項目	物性
土粒	子密度(g/cm ³)	2.741
含水	比 (%)	12.0
	礫 分 (%)	—
水宁	砂分(%)	70.6
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	細粒分 (%)	29.4
反	シルト分(%)	18.9
	粘土分 (%)	10.5
強熱減量 (%)		1.5

表-3 不溶化性能確認試験に用いた試料の土質性状

表-4 不溶化性能確認試験に用いた試料の性状

	項目	溶出濃度 (mg/l)
溶出試験	砒素及びその化合物	0.038
	鉛及びその化合物	0.008
	セレン及びその化合物	0.006
	ふっ素及びその化合物	0.71
	pН	9.1
	EC (mS/m)	65.9
	ORP (mV)	45
含有試験	砒素及びその化合物	15 未満
	鉛及びその化合物	15 未満
	セレン及びその化合物	15 未満
	ふっ素及びその化合物	400 未満

の溶出濃度の関係を示す。

酸およびアルカリに対しても、添加量 50kg/m³以上で は溶出基準以下の濃度を示し、安定した砒素の溶出抑制 効果を示している。

3. 有害物質判定の簡易化に関する検討

有害物質判定の簡易化に関しては、各公定法分析(原 子吸光、ICP 発光、ICP-MS)に代わる簡易分析として、 電気化学測定法の一種であるストリッピングボルタンメ トリー法の重金属類を含む掘削ずりに対する適用性を検 討した。

公定法による主な分析手順は、以下に示すような手順 で行われる。その中で比較的時間を要する前処理につい ても、時間短縮の可能性を要素試験により検討した。

〔公定法による溶出試験の手順〕

- i. 試料の風乾
- ii. 試料を粉砕、2mm アンダーにふるう
- iii. 6時間振とう(固液比1:10)
- iv. 上澄み液を 0.45µm のメンブレンフイルターで ろ過
- v. ろ過液を各公定法分析機(原子吸光、ICP 発光、 ICP-MS)で分析

3.1 簡易分析法の適用検討

ストリッピングボルタンメトリー法の適用検討には、 Geo-REX(積水化学工業㈱)を用いた。

測定原理は、まず、検液中の重金属イオンの還元電位 より低い電圧を印加させることにより、電極上に重金属 を析出させる。次に、その重金属イオンの還元電位より 高い電位まで走査させることにより、対象金属を溶液中 に再溶出させる。再溶出過程より得られる電流電圧曲線 から、対象金属の濃度を決定する。

この測定装置の特長は、装置自体がコンパクト(寸 法:高さ 220×幅 350×奥行き 200mm、重量:約 10kg)であり、オンサイトでの測定に利用しやすい。ま た、必要な検液量も比較的少量で良く、操作も簡単であ る。分析可能な物質は、As、Pb、Se、Cd、Cr⁶⁺、Hg の 含有量および溶出量である。

図-8にストリッピングボルタンメトリー法による分 析結果と、公定法分析による砒素の分析結果の関係を示 す。図には、2現場の掘削ずりA、Bと掘削時に採取し た排水についても示している。なお、簡易分析では、ス トリッピングボルタンメトリー法の分析精度に悪影響を 与える銅イオンの除去を前処理として行っている。

図-8より、ストリッピングボルタンメトリー法によ る簡易分析法は、公定法分析結果と比べ、試料自体のば らつきを考慮すると概ね良い相関を示している。この簡 易分析法を日常管理に使用するには、今後、様々な岩種 について分析し、データの蓄積を図る必要があると考え る。

図-8 簡易分析法と公定法による溶出試験結果の相関

3.2 分析の迅速化の検討

公定法の分析においては、分析機による分析よりも、 試料の前処理工程(風乾~振とう)に要する時間が長い。 ここでは、前処理に要する時間の短縮を目的に要素試験 を行った。試験パラメータは、風乾に代わる乾燥方法、 振とう時間と溶媒の pH、試料の粒径とした。分析方法 は、公定法分析(原子吸光、ICP 発光、ICP-MS)を用 いた。

現場より採取した掘削ずり(泥岩)を試料として用いた。公定法分析によるこの掘削ずりの重金属の溶出試験結果を表-5に示す。砒素は溶出基準(0.01mg/l以下)を超えている。セレンも若干であるが溶出基準(0.01mg/l以下)を超えている。この結果より、以降の試験では砒素およびセレンの溶出濃度に着目した。

a. 乾燥方法に関する要素試験

試験ケースを表-6に示す。試料の掘削ずりは、表-6の乾燥作業に入る前に 4.75mm アンダーに小割りした。 試験結果として、公定法分析結果に対する比を図-9 に示す。図中の値は、2検体の平均値を示している。

表-9より、砒素はケース2(乾燥なし)、ケース3 (乾燥炉)とも公定法分析結果の 0.8 程度の溶出濃度と なり、差異が見られた。セレンは、1.0 から 1.1 とケ

表-5 試験に用いた掘削ずりの溶出試験結果

項目	溶出濃度(mg/l)
カドミウム及びその化合物	0.001 未満
六価クロム化合物	0.01 未満
シアン化合物	検出されず
水銀及びその化合物	0.0005 未満
セレン及びその化合物	0.011
鉛及びその化合物	0.005 未満
砒素及びその化合物	0.076
ふっ素及びその化合物	0.37
ほう素及びその化合物	0.4

ース2、3とも砒素に比べ、公定法分析結果との差は小 さい。特にケース3では、ほぼ公定法と同じ濃度である。

砒素の場合、乾燥炉を用いると公定法分析結果の 0.8 程度の溶出濃度を示したが、この比率が一定ならば、そ の比率を考慮して評価することにより乾燥炉の利用が可 能と思われる。

b. 溶媒のpHと振とう時間に関する要素試験

自然由来の岩石からの重金属の溶出特性は、溶液の pH に影響されることが知られている⁵⁾。公定法では、 pH5.8~6.3 の溶媒を用いて振とうすることが定められて いる。ここでは、表-8に示すように溶媒の pH を3~ 10 まで変化させ、振とう時間を変えて振とうし、重金 属の溶出濃度の変化を把握した。ただし、溶媒の pH 調 整は振とう前のみで、振とう中における pH 調整は行っ ていない。

図-9に、公定法分析(ケース1)による溶出濃度に 対する比を示す。図-10に、溶出試験後のpHと公定法 分析(ケース1)による溶出濃度に対する比を示す。

砒素について、溶媒の pH を3~10 と変えても振とう 時間が3時間以下では公定法分析結果(ケース1)と比 べ、差が大きい。また、振とう時間を公定法と同じ6時 間とすると、溶媒の pH が3~5の場合、ほぼ公定法分 析結果と同じ溶出濃度を示している。これより、今回の 試料は、酸性の溶媒により溶出特性は変わらないことが わかる。ただし、図-10 に示すように、溶媒のケース 9 (pH9、振とう時間 10 分)、ケース 20~22 以外は pH9~10 の間を示しており、初期の溶媒の pH を変えて

表-8	溶媒の p	Н	と振と	う	時間に関す	る要素試験
	ケース					

試験 ケース	溶媒の pH	振とう 時間	備考
1	5.8~6.3	6 hr	公定法、 比較ケース
2		6 hr	
3	10	3 hr	
4	10	1 hr	
5		10min	
6		6 hr	
7	0	3 hr	
8	3	1 hr	
9		10min	
10		6 hr	
11	5	1 hr	
12		10min	
13		6 hr	
14	4	1 hr	
15		10min	
16		6 hr	
17	3	3 hr	
18	0	1 hr	
19		10min	
20		6 hr	
21	2	1 hr	
22		10min	

も、溶出試験後の pH には、あまり違いが見られない。 このため溶出濃度に顕著な差が表れなかったと思われる。 また、ケース 20~22 のように中性域になると溶出濃度 が小さくなる性状を示すことがわかる。

表-6 乾燥方法に関する要素試験ケース

試験 ケース	乾燥方法	備考
1	風乾	公定法、 比較ケース
2	乾燥なし	含水率 13%
3	乾燥炉 105℃、30min	

表-7 試料の乾燥方法と溶出濃度の関係 公定法の溶出濃度 試験 乾燥方法 に対する比 ケース セレン 砒素 1 風乾 1.0 1.0 乾燥なし 0.7 2 1.1 乾燥炉105℃、 3 1.0 0.8 30min

図-9 溶媒の pH と振とう時間に関する溶出試験結果(砒素)

図-10 溶出試験後のpHと砒素溶出濃度の関係

c. 試料の粒径に関する要素試験

公定法では、試料は2mm アンダーにふるうが、今回 は 850 µm アンダーにふるって比表面積を大きくするこ とにより、溶出濃度の変化を把握した。振とう時間は公 定法と同じ6時間および1、3時間とした。試験ケース を**表-9**に示す。

図-11に試料の粒径に関する試験結果を示す。

試料の粒径を 850µm アンダーとすると、振とう時間 を6時間とした場合、砒素、セレンとも公定法分析結果 とほぼ同じ溶出濃度であった。しかし、振とう時間を1、 3時間とした場合、公定法分析結果に比べ砒素、セレン とも0.8程度の溶出濃度となり、差異が見られた。今回、 試料の粒径を 850µm アンダーとし、振とう時間を3時 間以下にしたものの場合は、公定法分析結果と同じ溶出 濃度は得られない。ただし、さらに検体数を増やし、公 定法分析結果との比率が一定であれば、その比率を考慮 して評価することにより利用可能と思われる。

試験 ケース	試料の粒径	振とう 時間(hr)	備考				
1	2mm アンタ゛ー	6	公定法、 比較ケース				
2	850 μ m アンタ [*] -	6					
3	850 μ m アンタ [*] -	3					
4	850 // m アンター	1					

表-9 試料の粒径に関する要素試験ケース

図-11 試料の粒径と溶出濃度の関係

4. あとがき

国内の各所で遭遇することが十分考えられる建設工 事により発生する自然由来の重金属類を含有する岩石、 土壌については、その溶出濃度に応じた対策が必要とさ れる。その対策として、今後、適用が進むと思われる吸 着層による重金属溶出抑制および不溶化技術に着目し、 知見の蓄積を目的に吸着剤および不溶化剤の性能評価を 行った。

また、対策の必要性を判別する溶出試験方法について、 2週間程度を要する公定法分析に対し、要素試験により、 オンサイトで迅速に分析できる簡易法の適用の可能性を 探った。今回は一つのサイトの掘削ずりを対象としたが、 これについても、さらに多種多様な試料について検討していく必要があると考える。

謝辞:吸着剤および不溶化剤の性能評価については、北 海道大学大学院・五十嵐敏文教授にご指導を賜った。こ こに改めて深謝する。

【参考文献】

- 今井登、寺島滋、太田充恒、御子柴(氏家)真 澄、岡井貴司、立花好子、富樫茂子、松久幸敬、金 井豊、上岡晃、谷口政碩、「日本の地球化学図」、 産業技術総合研究所地質調査総合センター、2004
- 2)和田信一郎、日本地下水学会編、「地下水・土壌汚染の基礎から応用-汚染物質の動態と調査・対策技術 ー」、理工図書、pp.115-137、2006
- 国土交通省土木研究所、地盤環境の性状保全型建設 技術の開発に関する共同研究報告書、2001.3
- 4) 環境省監修、(社)土壌環境センター編、土壌汚染対 策法に基づく調査および措置の技術的手法の解説、 2003.9
- 5) 例えば、鈴木哲也他,重金属を含有する掘削土砂の 処理判定と対策,土と基礎,2004.9

バイオオーグメンテーションによる油汚染土壌浄化工法の確立

ー「微生物によるバイオレメディエーション利用指針」の適合確認を取得ー

The Establishment of a Method for Purification of Oil-polluted Soil using a Bio-augumentaion Technique

- Acquire the Conformity Confirmation of "the Bio-remediation Use

Indicator by the Microbe" -

宮北憲治* 小西正郎* 今井亮介**

要 旨

微生物による油汚染土壌浄化は、環境に優しく、コストも低い点から、幅広く採用されているが、工期が 長くなるという課題も持ち合わせている。この課題を解消するために、近年、外部から浄化能力の高い微生 物(以下、「菌」と記す)を導入する工法(バイオオーグメンテーション)が注目されている。そこで、著 者らは、浄化を速く確実に行うことのできるバイオオーグメンテーションによる油汚染土壌浄化の確立を目 的として、種々の油含有土壌より高い油分分解能力を持つ菌を複数単離し、これらの単離菌を用いて油汚染 土壌を浄化する工法を開発した。なお、この工法は国が定める「微生物によるバイオレメディエーション利 用指針」への適合が確認されており、環境面への安全性も考慮した工法であることが国からも認められた。 本報では、当該工法確立のために行った浄化能力の高い菌の単離法、特徴、安全性、および実油汚染土壌へ の適用性について述べる。

キーワード:バイオオーグメンテーション、単離菌、適合確認、安全性

1. まえがき

近年、人の健康に重大な影響を与えている油膜・油臭 の大きな原因となっている油汚染土壌を浄化するために、 様々な工法が適用されている。その中で、微生物による 浄化工法の代表的なものであるバイオスティミュレー ション工法は、環境に優しく、コストも低いことから、 現在まで幅広く採用されている。しかし、この工法は土 着菌の処理能力に依存する割合が高いため、工期が長く なるという短所も持ち合わせている。このような現状か ら、微生物分解においても、浄化を速く確実に行うこと を目的として、高い油分分解能力を持つ菌を投入して、 油汚染土壌の浄化を図るバイオオーグメンテーションに よる浄化工法を確立した。また、この工法は、国が定め る「微生物によるバイオレメディエーション利用指針」 への適合が確認されており、環境面への安全性も考慮し た工法であることが国からも認められた。バイオオーグ メンテーション工法による油汚染土壌浄化工法の主な特 徴は以下の通りである。

i. 従来の土着菌の処理能力に依存したバイオスティ ミュレーション工法より、効率的な浄化が可能であ

*東日本支社環境技術部 **東日本支社土木工事第1部

る

 ii. 複数の単離菌を導入することにより、分解可能な 油種および地質条件等の適用範囲が広がり、飽和炭 化水素系に高い分解効果を期待できる

iii. 導入する複数の単離菌は、微生物の基本特性試験、 動物への影響試験より、安全性を確認している

本報では、利用する複数の単離菌の分離選定法、特徴、 安全性、及び実油汚染土壌への適用性について述べる。

2. 油分解菌に優れた菌の単離、選定

2.1 油分解に優れた菌の単離

菌の単離、選定は以下の手順で行った。

- a. 種々の油含有土壌を微生物源とし、重油および栄養 塩が入った液体培地で振とう培養し、約 200 株の菌を 単離した。
- b. 単離した約200株の菌を重油および栄養塩が入った 液体培地で再度振とう培養し、著しく増殖した10菌 株を選抜した。
- c. 上記 10 菌株の 16SrRNA 遺伝子塩基配列を解析し、 相同性検索により近縁種をリストアップした。また、

これら近縁種に病原性が報告されているか否かを文 献・データベース等で調査し、さらにその中から安全 性の高いと思われる3菌株を選抜した。

ここで 16SrRNA 遺伝子塩基配列を解析することは、 リボソームの小サブユニットの RNA 塩基配列を基にし て微生物の進化系統を明らかにすることである。写真-1に菌の振とう培養状況、写真-2に菌の増殖状況、写 真-3に菌の単離状況を示す。

写真-1 菌の振とう培養状況

写真-2 菌の増殖状況

写真-3 菌の単離状況

2.2 単離した菌の特性

2.1 の方法で選抜された3菌株は16SrRNA 遺伝子塩 基配列から、それぞれ、Novosphingobium 属細菌、 Pseudomonas 属細菌、Rhodococcus 属細菌に分類される ことがわかった。そこで、この選抜された3菌株をそれ ぞれ、Novosphingobium sp. No.2 株、Pseudomonas sp. No.5 株、Rhodococcus sp. No.10 株と命名した。

また、資化性試験等の各種試験及び各種文献から、選

抜した3菌株及びその属の細菌、は以下のような特性を 持っていることがわかった。

a. Novosphingobium sp. No.2 株¹⁾ (写真-4参照)

Novosphingobium 属の細菌は通性好気性、グラム陰性 の桿菌であり、様々な環境から分離されていることから、 地球上に広範囲に生息する微生物であると考えられてい る。No.2 株自身は、グルコースやピルビン酸等の代表 的な糖、有機酸を資化できるほか、 C_{18} 、 C_{19} あるいは C_{27} 以上の長鎖アルカンを分解・資化することができる。

なお、グラム陰性菌とは、菌を選択的に染め出す染色 法(赤色に染まる、染まらないで細胞壁構造が異なるこ とが把握できる菌の分類指標の一つ)において赤色に染 まる菌を指す。桿菌とは、菌を形状分類した際に、円筒 状の細長い形をしたものをいう。また、グルコースとは ブドウ糖のことで、ピルピン酸とは、生体内でブドウ糖 が分解される経路の重要な中間体のことである。アルカ ンとは、脂肪族飽和炭化水素のことであり、Cx と記述 することが多い。

写真一4 *Novosphingobium* sp. No.2 株

b. Pseudomonas sp. No.5 株¹⁾ (写真-5参照)

Pseudomonas 属の細菌は通性好気性、グラム陰性の桿 菌であり、種類が多く、幅広い特徴を持ち、様々な環境 から分離されていることから、地球上に広範囲に生息す る微生物であると考えられている。No.5 株自身は、グ ルコースやピルビン酸等の代表的な糖、有機酸を資化で きるほか、C₁₉ 以上の長鎖アルカンを分解・資化するこ とができる。

写真一5 Pseudomonas sp. No.5 株

c. *Rhodococcus* sp. No.10 株¹⁾ (**写真一6**参照)

Rhodococcus 属の細菌は通性好気性、グラム陽性の球菌または桿菌であり、様々な環境から分離されていることから、地球上に広範囲に生息する微生物であると考えられている。No.10 株自身は、グルコースやピルビン酸等の代表的な糖、有機酸を資化できるほか、C₁₀以上の長鎖アルカンを非常によく分解・資化することができる。

5.00 µm 図-3 *Rhodococcus* sp. No. 10 株

3. 選抜した3菌株の安全性確認

3.1 文献調査による安全性の確認

16SrRNA 塩基配列比較により、当該3菌株と相同性 の高い近縁種細菌を調べ、これら近縁種のバイオセーフ ティレベル(日本細菌学会)を調査した。バイオセーフ ティレベルとは、病原性微生物等をヒトへの病原性から 分類した基準のことである。

結果を以下に記載する。

- a. Novosphingobium sp. No.2 株

この系統樹に示された No.2 株と相同性の高い菌全て について、バイオセーフティレベル(日本細菌学会)を 調査した。いずれも安全性に問題の無いバイオセーフ ティレベル1であった。また、その他の文献・データ ベース等においても、最近縁種に病原性等の問題は無 かった。

b. Pseudomonas sp. No.5 株

Pseudomonas sp. No.5 株の系統樹を図-2に示す。

注) 菌名の後の数字は No.5 株との相同性を示す。

図-2 Pseudomonas sp. No.5株の系統樹

この系統樹に示された No.5 株と相同性の高い菌全て について、バイオセーフティレベルを調査した。 Novosphingobium sp. No.2 株と同様、いずれも安全性に 問題の無いバイオセーフティレベル1であった。また、 その他の文献・データベース等においても、最近縁種に 病原性等の問題は無かった。

c. Rhodococcus sp. No.10 株

Rhodococcus sp. No.10株の系統樹を図-3に示す。

この系統樹に示された No.10 株と相同性の高い菌全て について、バイオセーフティレベルを調査した。 Novosphingobium sp. No.2 株、Pseudomonas sp. No.5 株 と同様、いずれも安全性に問題の無いバイオセーフ ティレベル1であった。また、その他の文献・データ ベース等においても、最近縁種に病原性等の問題は無 かった。

3.2 動物実験による安全性の確認

a. 哺乳動物を対象とした動物実験

哺乳動物を対象として、当該3菌株等量混合物を経口 投与して、体重変化、内臓等の所見を行ったが、異常は 見られなかった。

b. 魚類を対象とした水中暴露試験

魚類が生息する水槽に当該3菌株等量混合物を導入し たが、毒性症状、沈殿、浮遊物等に異常は見られなかっ た。

以上の結果より、当該3菌株の動物に対する病原性、 毒性等の影響は無いものと考えられる。

3.3 他の微生物への影響

砂質系、粘土質系の2種類の油汚染土壌に3菌株をそれぞれ1×10⁶ cell/g(乾土)添加し、実際の浄化作業に即した給気・攪拌、栄養物質の添加を施した際(写真-7参照)の土着の他の微生物への影響をT-RFLP解析 により評価した(図-4参照)。ここでT-RFLP解析 とは細菌の集団構成パターンの比較や変化の追跡を簡易 的に調べる手法をいう。3菌株の添加前と添加から約 1ヶ月後の土壌中微生物の遺伝子を比較解析した結果、 増加した一般細菌の中で、病原菌に相当する有害微生物 は認められなかった。

写真-7 試験状況

矢印;増殖した微生物由来のピーク図-4 T-RFLP 解析

3.4 選抜した単離菌の挙動把握

選抜した3菌株はいずれも単離された菌であり、著者 らは 16S-23SrRNA 遺伝子間領域に由来する特異的プラ イマーを用いた PCR 法による検出法を確立し、No.2 株 No.5 株、No.10 株を容易に検出可能である。(図-5参 照)。この方法を利用して、導入3菌株の増減等の挙動 が把握できる。

※3 菌株添加欄 M;マーカー +;利用微生物添加、一;利用微生物非添加 図-5 利用微生物の検出

4. 3菌株混合投入による実油汚染土壌浄化実験

4.1 実験方法

実油汚染土壌を用いて、選抜した3菌株等量混合物を 投入した油分分解試験を行った。下記に具体的試験方法、 菌の投入量、および栄養塩の添加量を示す。

a. 試験方法

実油汚染土壌(C₁₂~C₁₈の軽質油分を主体とし、油分 濃度が 4,700mg/kg(乾土)程度)を2ヶのアルミバッ トに0.7kgずつ入れ、1つには3菌株等量混合物と栄養 塩(バイオオーグメンテーション)、もう1つには栄養 塩のみを投入(バイオスティミュレーション)し、油分 の分解状況を確認した。また、両試験区とも水分確保と 好気性状況を保つために、適宜加水し、攪拌を行った。 b. 菌の投入量

菌を投入する試験区に対して、3菌株等量混合物を2 $\times 10^{6}$ cell/g(乾土)の割合で投入した。

c. 栄養塩の添加量

両試験区とも、乾土1g に対して、濃度 250ppm の窒 素と濃度 50ppm のリンを有する栄養塩を添加した。

4.2 実験結果

油分分解試験は1ヶ月間行い、適宜、赤外分光分析法 により油分濃度を測定した。油分濃度測定結果を図-6 に示す。このグラフからも明らかであるが、3菌株等量 混合物を投入したバイオオーグメンテーション工法の方 が、投入しないバイオスティミュレーション工法より、 効率よく油分が分解されていることが確認された。

5. 実油汚染土壌浄化への適用法

5.1 施エフロー

実油汚染土壌浄化工事に適用する場合の施工フローは 図-7を想定している。また、各項目についての詳細を 下記に示す。

a. 油汚染状況調査

対象とする油汚染土壌の油分濃度、油の種類を調査し、 3 菌株投入による浄化が、効率的かどうかを判断する。 b.3 菌株投入による適用評価試験

aで浄化可能と判断された場合は、当該油汚染土壌に 3菌株を導入して室内レベルでの浄化実験を行う。ただ し、この実験の際には以下のことも調査し、総合的に3 菌株導入による浄化が適しているか否かを判断する。 i. 油分濃度の低減状況

3 菌株を導入しても、油分濃度の低減があまり認め られない場合は適用しない

ii.利用微生物数の増減状況
 利用微生物数が異常に増殖し、低減の傾向が認められない場合には、適用しない

iii. 環境微生物の増加の有無

環境微生物の増加が著しい場合には、適用しない

c. バイオオーグメンテーション工法の適用

a, bの調査より3菌株導入による浄化が、総合的に 適していると判断された場合に、適用する。

d. 油分分解の確認、環境影響評価

浄化時は、油分濃度の測定を行い、油分分解の効率が 悪い時は適宜3菌株、栄養塩を追添加する。また、導入 3菌株の増減状況、油臭の発生状況等の調査を適宜行い、 周辺環境に影響を及ぼさないよう監視する。

e. 浄化完了の確認

油分濃度が浄化目標に達し、油臭・油膜も発生してい ないこと、利用微生物数が減少傾向で、かつ土着の微生 物数の5分の1を下回ること、土着菌中の病原菌が増殖 していないことの3項目全てが確認できた段階をもって 浄化作業終了とする。

5.2 適用時の概要

適用工法は、以下の2通りの工法を想定している。 a. ランドファーミング工法

掘削した油含有土壌を地上に盛土し、3菌株と栄養 塩を導入する工法で、一般的に敷地が広く、汚染土壌が 掘削可能な場合に適用する。盛土後、定期的に重機で土 壌を攪拌して土壌中を好気的条件に保ち、微生物の活性 を促し、油分の分解を図る工法である。図-8に施工図 を示す。

図-8 施工図 (ランドファーミング工法)

浄化が確認された土壌は、掘削場所に埋め戻すことを 原則とする。浄化期間は油分濃度、油種によって多少相 違があるが、1~3ケ月が目安である。**写真-8**にラン ドファーミング工法による施工状況を示す。本工法適用 時も、ほぼ同様の浄化状況を想定している。

写真-8 想定施工状況 (ランドファーミング工法)

b. 注入工法

垂直又は水平ボーリングを用いて、複数の注入孔を設 けた注入井戸を設置し、3菌株と栄養塩を導入する工法 である。図-9に施工図を示す。

この工法は、一般に敷地が狭い場合、掘削が不可能な 場合に適用する。なお、可能な限り、井戸は垂直ボーリ ング孔による垂直井戸とするが、既存建物等の存在で不 可能な場合は、水平ボーリング孔により水平井戸を設置 する。また、注入工法の場合は、注入孔より空気等を供 給して常に好気的条件が保たれるようにする。**写真-9** に垂直井戸を設置した注入工法による施工状況を示す。 本工法適用時も、ほぼ同様の浄化状況を想定している。

写真-9 想定施工状況(注入工法)

6. あとがき

3菌(Novosphingobium sp. No.2 株、Pseudomonas sp. No.5 株、Rhodococcus sp. No.10 株)の等量混合物を導入 することによる、油汚染土壌浄化への有効性を実験的に 確認した。また、この工法については、国が定める「微 生物によるバイオレメディエーション利用指針」への適 合が確認された。すなわち、確認が得られた方法に基づ いて浄化工事を実施すれば、生態系への影響、及び人へ の健康影響に配慮した適性な安全性評価手法及び管理手 法のための基本的要件を満たすことを、国より認められ ることになる²⁾。

今後、当該技術の共同開発企業である㈱アイアイビー (CEO は京都大学名誉教授で、現在は立命館大学生命 科学部教授の今中忠行氏)とともに、ガソリン、軽油、 重油等が存在する可能性が高い油槽所跡地、ガソリンス タンド、自動車関連業、電気機器製造業、化学工場等が 立地する敷地等の油汚染土壌の浄化工事において、本技 術の適用実績を積み重ねてゆく所存である。

【参考文献】

- 1) George M.Garrity 他、Bergy's Manual of Systematic Bacteriology
- 2) 経済産業省、環境省告示第四号、「微生物によるバイ オレメディエーション利用指針」、2005

高靭性繊維補強セメント複合材料を用いた梁の構造実験

Structural Experiment of Reinforced Beams using Strain-hardening Cementitious Composites

細矢 博* 岸本 剛* 河野政典* 起橋孝徳*

要旨

近年、高層集合住宅では、プラン計画上の自由度に優れ、かつ居住空間を広く取れるコア壁構造形式の建 物の開発が進められている。この高層建物におけるコア壁の連結梁は短スパンであり、地震時には高応力下 で大きな変形角を強いられることから、梁に変形性能に優れた高靭性繊維補強セメント複合材料 SHCC (Strain-Hardening Cementitious Composites)を用いることを計画し、実験的にその構造性能を検討した。その 結果、SHCC 梁では微細なひび割れが多数発生するものの被りの剥離は無く、損傷は RC 梁に比べ軽微であ ること、SHCC 梁の Q-R 曲線は R=1/20rad まで安定した履歴を示し、履歴吸収エネルギーは RC 梁に比べて 大きいこと、SHCC 梁の最大曲げ耐力は、既往の諸式で 20~30%程度安全側に評価されること、せん断耐 力は、終局強度型耐震設計指針のせん断耐力式を SHCC による引張強度上昇を考慮し修正した式により安 全側に概ね精度良く評価できること、などがわかった。

キーワード:高靭性繊維補強セメント複合材料、SHCC、梁、加力実験、構造性能

1. まえがき

近年、高層集合住宅では、プラン計画上の自由度に優 れ、かつ居住空間を広く取れる構造形式の開発が求めら れている。このニーズに応えるべく、ラーメン構造では なく地震力の大半をコア壁に負担させる図-1に示すよ うな構造形式の建物が増加しつつある。この建物では、 コア壁とコア壁を連結する梁は、平面計画上の制約から 短スパン梁にならざるを得ない。短スパン梁は、地震時 に高応力下で大きな変形角を強いられる。このため、従 来のRC梁ではなく、せん断耐力と変形性能に優れ、更 にはエネルギー吸収能力にも優れる新材料を用いた高靭 性梁を適用する試みが進められている。この背景の下、 筆者らは、モルタルに有機繊維PVA (Polyvinyl Alcohol)を 混入した高靭性繊維補強セメント複合材料SHCC (Strain-Hardening Cementitious Composites)を用いた短スパン梁 の開発を行なっている。本研究では、SHCC梁の構造性 能を把握することを目的に、曲げ破壊型とせん断破壊型 の梁部材を対象にした加力実験を行ったので報告する。

2. 曲げ破壊型梁部材の加力実験計画

2.1 試験体

試験体の諸元を表-1に、形状・寸法、配筋例を図-

*技術研究所

図-1 建物の架構のイメージ

2に示す。試験体は、梁試験区間のコンクリートもしく は SHCC の設計基準強度が $F_c=48N/mm^2 \ge F_c=30N/mm^2$ の2シリーズから構成されている。また、両シリーズは 基準用の RC 試験体、比較用の X 形配筋 RC 試験体、な らびに開発対象の SHCC 試験体から構成されている。 SHCC 試験体は、せん断余裕度を実験因子としている。 全ての試験体は、曲げ破壊型に計画されている。

表-1	曲げ破壊型試験体の諸元	

		設計基準	試	験体寸	·法	シア スパンド	梁	È筋	横	補強筋						
試	験体	F _c	B	_{万人} D	же L	L/2D	配筋	鋼種	配筋	\mathbf{p}_{w}	鋼種					
		(N/mm^2)		(mm)	•					(%)						
M1	RC	48					上虚窑		4-D10@120	0.74						
M2	X形RC		48			1260	1.5	4 D10	2-D10@120	0.37		ここで、				
M3				48	48	48	48	320	420	1260	1.5	4-D19	SD490	4-D10@120	0.74	SD785
M4	SHCC						卜端筋		2-D10@120	0.37		条件をほぼ同一にし、				
M5	1				1008	1.2	4-D19		4-D10@120	0.74						
M6	RC						上端筋		4-D10@120	0.74						
M7	X形RC	20	220	200	1140	15	4-D16	5D200	2-D10@120	0.37	50205	新して来の構造付住を				
M8	GLICC	30	520	380	1140	1.5	下端筋	5D390	4-D10@120	0.74	5D295	対比できるように設定し				
M9	SHUU									4-D16		2-D10@120	0.37	1	ている。	

図-2 試験体の形状・寸法、配筋例

2.2 使用材料

コンクリートおよびSHCCの材料試験値を 表-2に、SHCCに使用した有機繊維PVAの 物理的性質を表-3に示す。本実験のSHCC には、PVAがモルタルに2.0vol%混入している。 また、鉄筋の材料試験値を表-4に示す。

2.3 加力方法

図-3に示す建築研究所方式の加力実験装置を用い、 軸力を零として、水平方向に2サイクルずつの正負交番 漸増繰り返し加力を行い、梁試験区間に逆対称曲げモー メントとせん断力を作用させた。

3. 曲げ破壊型梁部材の加力実験結果

3.1 破壊状況

R=1/20rad 終了時のひび割れ状況例を写真-1に示す。 RC 試験体や X 形配筋 RC 試験体ではひび割れ幅が拡大 し、梁材端部では被りコンクリートが剥離するなど損傷 が激しかった。SHCC 試験体では、微細なひび割れが多 数発生するが、SHCC の被りの剥離は生じず損傷は軽微 であった。その一方で、梁材端部付け根ではひび割れが 大きく開口し、この部位に損傷が集中した。

表-2 コンクリートおよび SHCC の材料試験値

試験体		圧縮強度	圧縮強度時 ひずみ度	ヤング 係数	引張強度
н. 	NUX IT:	(N/mm^2)	(×10 ⁻³)	(kN/mm^2)	(N/mm^2)
M1	RC	55.9	2.52	36.2	3.53
M2	X形RC	53.0	2.56	34.1	4.43
M3		58.4	3.64	21.9	2.23
M4	SHCC	60.3	3.70	21.9	-
M5		60.6	3.61	22.4	-
M6	RC	32.9	1.93	30.3	2.87
M7	X形RC	32.7	2.14	28.4	2.45
M8	SHCC	45.3	3.69	18.6	-
M9	SHCC	44.4	3.63	18.5	1.98
	-11 1 m	717674 6	1 44 51 3 5 5 5	1-1-10 011	

コンクリートの引張強度は割裂試験により、SHCCの引張 強度は建築研究所方式による引張試験¹⁾により求めた。

表-3 PVA の物理的性質

口采	直径	長さ	引張強度	切断伸度	ヤング率
叩笛	(mm)	(mm)	(N/mm^2)	(%)	(kN/mm ²)
REC15×12	0.04	12	1600	6	40

表-4 鉄筋の材料試験値

部位	呼び名	種類の	降伏強度	降伏 ひずみ度	ヤング係数	引張強度	破断伸び
		記方	(N/mm^2)	(×10 ⁻³)	(kN/mm ²)	(N/mm^2)	(%)
测于树	D16	SD390	452	2.54	194	639	20.4
朱土肋	D19	SD490	541	3.05	191	705	18.2
横補強筋	D10	SD295	355	2.01	180	475	29.3
	D10	SD785	1045*	-	191	1216	7.4

注)*は0.2%オフセット強度

写真-1 ひび割れ状況例(R=1/20rad 終了時)

3.2 残留ひび割れ幅

梁試験区間に生じた最大残留ひび割れ幅と部材角の 関係を図-4に示す。F₆48 シリーズの RC 試験体 M1、 X 形配筋 RC 試験体 M2 では、レベル 2 の地震時に連結 梁が経験すると想定される部材角 R=1/33rad でひび割れ 幅が 1.0mm 程度に達しているが、SHCC 試験体 M3、 M4 では 0.1mm 以下であった。また、マトリクスの強度

図-4 残留ひび割れ幅-部材角関係

が低い F_{o30} シリーズの M6~M9 試験体でも類似した結 果であった。SHCC 梁では、残留ひび割れ幅が 0.3mm 以下であることから、梁材端部付け根以外は大地震後に ひび割れ補修の必要がないものと判断される。

3.3 せん断カー部材角曲線

 F_c48 シリーズの RC 試験体 M1、X 形配筋 RC 試験体 M2、SHCC 試験体 M3 のせん断力(Q)-部材角(R)曲線を 代表例として**図**-5に示す。また、Q-R 曲線の正方向側 の包絡線を**図**-6に示す。試験体 M1、M2、M3 とも、 降伏後 R=1/20rad まで耐力の低下がほとんど無い安定し た Q-R 曲線であった。降伏部材角は、試験体種別では 大差なく、 F_c48 シリーズでは約 1/140rad、 F_c30 シリーズ では約 1/190rad であったことから、塑性率 7~10 程度 まで曲げ耐力を保持することがわかる。また、曲線の形 状をみると、M1 は痩せている、M2 はほぼ紡錘形でエ

ネルギー吸収力に優れている、 M3 は M1 と M2 の中間的な性 状を示すことがわかる。

図-6 せん断カー部材角曲線の包絡線

包絡線の図からは、SHCC 試験体と RC 試験体では、 降伏時の耐力に差はほとんど認められないが、それ以降 のサイクルでは、SHCC 試験体は RC 試験体、X 形配筋 RC 試験体より耐力が上回ることがわかる。SHCC 試験 体では梁材端部に圧壊がほとんど生じないため、圧壊が 生じる RC 試験体に比べ応力中心間距離が大きいものと なり、その差が耐力差になったものと考えられる。

3.4 初期剛性

初期剛性の実験値と計算値との関係を図-7に、実験 値を表-5に示す。実験値は、Q-R曲線の立ち上がりの 領域で剛性が変化する点と原点を結ぶ直線の傾きから求 めた。計算値は、コンクリートと梁主筋を考慮した初期 剛性式²から求めた。表-5でSHCC試験体とRC試験 体の初期剛性の実験値を比較すると、前者は後者の56 ~70%であった。これは、表-2に示すように、SHCC はコンクリートに比べヤング係数が40%程度小さいた めと考えられる。一方、実験値と計算値を比較すると、 概ね良い対応を示している。SHCC梁に対しても既往の 初期剛性式で評価できることが確かめられた。

3.5 降伏時部材角、降伏時剛性

Q-R曲線で剛性が急激に変化し降伏したと判定される 点を降伏点とし、その部材角を図-8に示す。また、降 伏時剛性を表-6に示す。SHCC試験体は、RC試験体や X形配筋RC試験体に比べ初期剛性は小さいが、降伏時 の部材角は、RC試験体、X形配筋RC試験体と大差なく、 したがって、降伏時剛性にも大差ないことがわかる。

3.6 履歴吸収エネルギー、等価粘性減衰定数

 $F_c30シリーズの試験体の履歴吸収エネルギーを図-9$ に、等価粘性減衰定数を図-10に示す。部材角 R=1/100radまでは各試験体とも履歴吸収エネルギーに差 はほとんど無いが、それ以降のサイクルでは、SHCC試 験体はX形配筋RC試験体同様、RC試験体に比べ履歴吸 収エネルギーは大きいことがわかる。一方、等価粘性減 衰定数(h_{eq})は、SHCC試験体ではX形配筋RC試験体より 小さいがRC試験体よりは大きく、ほぼ中間的な減衰定 数であり、R=1/100rad以降は部材角によらず $h_{eq}=20\%$ 程 度であった。これは、 F_c48 シリーズも同様であった。

3.7 最大曲げ耐力の実験値と計算値との関係

最大曲げ耐力の実験値とACI式およびファイバーモデ ルの断面解析による計算値との関係を図-11に示す。 ACI式計算値、断面解析値は互いに同程度の値を示し、 実験値に対して、Fe48シリーズでは12~21%、Fe30シリー ズでは22~30%程度小さめに評価した。これは、図-5に も示しているように、計算値は、曲げ降伏耐力の実験値 に対しては精度良く評価するものの、試験体の曲げ耐力 は降伏以後も上昇するので、最大曲げ耐力の実験値に対 しては、安全側の評価になっているものである。この現 象は、梁主筋の引張強度/降伏強度の比が大きいFe30シ リーズがFe48シリーズより顕著である。ここで、曲げ耐

1.2、それ以外は1.5

力は梁材端部付け根の打ち継ぎ部位置で決定されている ので、SHCC 試験体でもマトリクスの引張強度上昇効果 による曲げ耐力への影響は無いと考え計算している。

4. せん断破壊型梁部材の加力実験計画

図-11 最大曲げ耐力の実験値と計算値との関係

4.1 試験体

試験体の諸元を表-7に示す。試験体は梁試験区間 のコンクリートもしくはSHCCの設計基準強度がFc=48 $N/mm^2 \ge F_e = 30N/mm^2 の 2 シリーズから構成されている。$ F.48シリーズは基準用のRC試験体、開発対象のSHCC試 験体から構成され、F₆30シリーズはSHCC試験体のみで 構成されている。全ての試験体はせん断破壊型に計画さ れており、横補強筋比と鋼種が実験因子となっている。

4.2 使用材料

S5

S6

SHCC

コンクリートおよび SHCC の材料試験値を表-8に 示す。鉄筋の材料試験値を表-9に示す。

ま __ フ

5. せん断破壊型梁部材の加力実験結果

30

			A	,				1010			
3.5 FA /L		設計基準 強度	 試験体寸法 幅 │ 成 │ 長さ 			シア スパン比	梁主筋		横補強筋		
武	陂1平	F _c	В	D	L	L/2D	配筋	鋼種	配筋	\mathbf{p}_{w}	鋼種
		(N/mm^2)		(mm)	-					(%)	
S1	RC						上端筋		2-D10@100	0.44	\$D205
S2		18	320	420	1008		8-D19		2-D10@100	0.44	50295
S3	SHCC	-10	520	720	1008	1.2	下端筋	50685	2-D10@200	0.22	SD785
S4						1.2	8-D19	50085	2-D10@200	0.22	SD295
S5	auco	20	220	200	010		8-D16		2-D10@100	0.44	SD295

サム版破陸刑試験体の諸元

8-D16

5.1 破壊状況

RC試験体S1とSHCC試験体S2について、 R=1/33rad終了時の破壊状況例を写真-2に 示す。S1では、対角線状のひび割れが拡大し、 被りコンクリートが剥離して破壊に至った。 S2では、最大耐力までに0.2mm以下の微細な ひび割れが多数発生し、そのうち隅角部を結 ぶひび割れが拡大して破壊に至った。しかし、 被りの剥離は生じずS1とは損傷の様相に違い がみられた。その他のSHCC試験体の破壊状 況もS2と類似していた。最大耐力に至るまで に、S5で梁主筋1本が降伏したものの、その

他の試験体では梁主筋の降伏は確認されず破壊に至った ので、全試験体ともせん断破壊と判定した。

[S2] ひび割れを油性ペンでな ぞっているため太く見える SHCC が、[S2]の実際のひび割れ は極めて微細である。

写真-2 ひび割れ状況例(R=1/33rad 終了時)

5.2 せん断カー部材角曲線

2-D10@100 0.44

2-D10@200 0.22

[S1]

RC

F.48シリーズのRC試験体S1とSHCC試験体S2のせん

断力(Q)-部材角(R)曲線を 代表例として図-12に示 す。S2では、3本の横補 強筋が降伏したためせん 断耐力の頭打ちがみられ、 正方向側ではS1と比べて 最大耐力に大差なかった が、負方向側では最大耐 力の低下は小さかった。

S1とS2は条件を同一にし、RC 梁とSHCC 梁の構造特性を対比できるように設定している。

912

表-8 コンクリートおよび SHCC の材料試験値

380

320

試測	驗体	圧縮強度	E縮強度時ひずみ度	ヤング 係数	引張強度
10-10X 17-		(N/mm^2)	(×10 ⁻³)	(kN/mm ²)	(N/mm^2)
S1	RC	55.3	2.32	37.9	3.69
$S2\sim S4$	SHCC	61.5	3.78	20.8	1.98
S5,S6	SHCC	42.3	3.58	17.2	-

コンクリートの引張強度は割裂試験により、SHCCの引張強 度は建築研究所方式による引張試験1)により求めた。

表-9 鉄筋の材料試験値

部位	呼び名	種類の	降伏強度	降伏 ひずみ度	ヤング係数	引張強度	破断伸ひ	
		記方	(N/mm^2)	(×10 ⁻³)	(kN/mm ²)	(N/mm^2)	(%)	
沥土업	D16	SD685	733	4.60	196	930	12.4	
朱土肋	D19	SD685	711	4.10	192	892	13.9	
横補強筋	D10	SD295	355	2.01	180	475	29.3	
	D10	SD785	1045*	-	191	1216	7.4	

注)*は0.2%オフセット強度

このため、S2ではS1に比べQ-R曲線の包絡線が大きかっ た。これはS3でも同様であった。一方、Fc30シリーズで、 SD295を用いpw σwv=1.56N/mm²のS5とSD785を用いpw にもかかわらずS6よりも耐力、変形性能に優れ、Q-R曲 線の履歴面積は大きく、復元力特性に差がみられた。 このことから、SHCC梁の復元力特性に対しては、横補

> 強筋強度より横補強筋比の影響の度合いが強 いと考えられる。

5.3 せん断耐力の評価

SD785

せん断耐力の実験値と計算値との関係を表 -10と図-13に示す。せん断耐力の計算値は、 日本建築学会の終局強度型耐震設計指針3)の せん断耐力式をベースに、SHCCのPVAによ

る引張強度上昇効果を考慮し修正した下式により求めた。 ここで、実験時に観察されたせん断ひび割れの角度は 45~50 度であったことから、マトリクスの圧縮束の角 度は45 度と仮定し cot φ=1.0 としている。

$Q_{su} = bj_t(p_w \sigma_{wy} + \sigma_t) \cot \phi + \tan \theta (1 - \beta) bD \nu \sigma_B/2$	(1)
$\tan \theta = \sqrt{\left[(L/D)^2 + 1 \right]} - L/D$	
$\beta = \{ (1 + \cot^2 \phi) (\mathbf{p}_{w} \sigma_{wy} + \sigma_{t}) \} / (\nu \sigma_{B})$	(2)
v=1.7 σ _B ^{-0.333} (CEB 式より引用)	
$p_w \sigma_{wy} + \sigma_t \leq \nu \sigma_B/2$	(3)
σ_{t} = (-0.0004 σ_{B} +0.0623) σ_{B}	(4)
ν:コンクリート、SHCCの圧縮強度有効係	数
$\mathbf{b}:梁幅 j_t:梁主筋中心間距離 p_w:横補強$	筋比
σ_{wy} : 横補強筋降伏強度 D : 梁成 L : 内法	長さ
σ _B :コンクリート、SHCCの圧縮強度	
σ _t :SHCCの引張強度、コンクリートはσ _t =	0
式(4)は、SHCC の供試体による材料試験によ	り得ら

れた図-14 に示す引張強度($\sigma_{\rm B}$)/圧縮強度($\sigma_{\rm B}$)-圧縮 強度(σ_в)関係を直線回帰し、導出したものである。

図-13 に示すように、計算値は実験値と概ね良い対 応を示し、かつ安全側に評価することがわかる(平均値 1.16、標準偏差 0.12、変動率 0.10)。このことから、本 実験で用いた SHCC の範囲においては、SHCC 梁のせ ん断耐力は式(1)で評価できると判断される。

6. まとめ

本実験の範囲で得られた知見を以下に示す。

- i.SHCC梁では、0.2mm以下のひび割れが多数生ずるが、 被りの剥離は無く、損傷はRC梁に比べ軽微である
- ii. SHCC梁のQ-R曲線は、R=1/20rad(塑性率7~10)まで 安定した履歴を示し、履歴吸収エネルギーはRC梁に 比べて大きい
- iii. ACI式計算値および断面解析値は、SHCC梁の最大げ 耐力の実験値に対して20~30%安全側に評価する
- iv. SHCC梁のせん断耐力は、終局強度型耐震設計指針 のせん断耐力式をSHCCによる引張強度上昇を考慮し 修正した式により安全側に概ね精度良く評価できる

7. あとがき

SHCC 梁の構造特性を概ね把握す ることができた。また、曲げ耐力お よびせん断耐力の計算方法の精度に 対しても知見が得られた。今後は、 更に短スパンであるシアスパン比 1.2 の SHCC 梁の加力実験を行い、 構造性能に関する知見を広げたい。

	試験体		実 更 (k	険値 │ 負方向 N)	計算値 (kN)	実験値 (最大値) /計算値
	S1	RC	599	501	504	1.19
Ì	S2	SHCC	612	624	595	1.05
	S3	SHCC	668	685	640	1.07
	S4	SHCC	608	539	546	1.11
	S5	SHCC	600	484	429	1.40
Ĵ	S6	SHCC	516	543	467	1.16
	平	1.16				
	標注	0.12				

[終局強度式] 計算值 (kN)

図-13 せん断耐力の実験値と計算値との関係

引張強度:建築研究所方式による引張試験 1)により得られ た材料試験値 圧縮強度:JIS A 1108 により得られた材料試験値

図-14 規準化引張強度と圧縮強度との関係

【参考文献】

- 1) 佐藤幸博、福山 洋、諏訪田晴彦、「高靭性セメント系 複合材料の一軸引張一圧縮繰り返し試験方法の提案」、 日本建築学会構造系論文集、No.539、pp.7~12、2001.1
- 2) 日本建築学会、「鉄筋コンクリート終局強度設計に関 する資料」、pp.71、1987
- 3) 日本建築学会、「鉄筋コンクリート造建物の終局強度 型耐震設計指針・同解説」、pp.106~121、1990

免震建物における地震観測

Seismic Observation of Base Isolated Buildings

山上 聡* 安井健治* 川井伸泰**

要 旨

奥村組では技術研究所管理棟をはじめとし、全国 12 ヶ所の免震建物で地震観測を実施している。本報告 では、免震建物地震観測網を紹介し、これまでに観測された記録に基づいて、採用されている免震装置の種 別や、地震動特性による免震建物の応答性状の違いについて報告する。さらに、観測記録より求めた、免震 建物の固有振動数、減衰定数を、設計時に想定した固有振動数、減衰定数と比較した結果、免震層変位が9 cm まで達した鉛入積層ゴムを用いた免震建物では、ほぼ一致することを確かめた。標準積層ゴムや高減衰 積層ゴムを含め、免震装置の大地震時における免震効果を検証するには、今後も観測を続け、記録の蓄積が 必要である。

キーワード:地震観測網、免震建物、応答性状、固有振動数、減衰定数

1. まえがき

免震構法は、日本では 1986 年に実用化され、1995 年 に発生した兵庫県南部地震以降、急速に普及した構造形 式である。そのため、免震構法を採用した建物では、地 震時における免震装置の性能や建物の応答を検証するた めに、数多くの建物で地震観測が行われており、大地震 時の観測記録も報告されるようになった。

奥村組では、1986年に日本で最初に実用化した免震 建物である技術研究所管理棟(茨城県つくば市)をはじ めとし、全国12ヶ所で地震観測を実施しており、23年 間で延830余りの観測記録を得た。ここでは、これらの 観測記録に基づいて、地震時における免震建物の水平方 向の応答性状を検討した結果について報告する。

2. 免震建物の地震観測

2.1 奥村組の地震観測網

1986年に免震建物の地震観測を開始した。その後、 1995年の兵庫県南部地震以降に観測網を強化し、現在 では、全国 12ヶ所で観測を実施している。観測地点と 観測された地震の震源地、および地震規模を図-1に示 す。震源地の分布を見ると、関東平野から宮城県沖にか けて多く発生している。北海道では、釧路沖での記録が 多い。観測建物の概要を表-1に示す。構造形式(RC 造、S造、SRC造)、階数、免震装置の種類が異なる免 震建物の挙動を観測できるよう計画している。芦屋(③)

*技術研究所 **東日本支社建築設計部

の免震装置は標準積層ゴムと鋼棒ダンパーおよび鉛ダン パーの組合せ、八王子(⑤)は非線形な復元力を持つ転が

	所在地	構造	階数	免震装置	地震計設置階	観測開始
1	茨城県つくば市	RC造	4階	標準積層ゴム、鋼棒製ダンパー	BS, 1F, 3F, RF	' 86. 09
2	静岡県浜松市	RC造	6階	標準積層ゴム、鋼棒製ダンパー	BS, 1F	' 97. 10
3	兵庫県芦屋市	RC造	6階	標準積層ゴム、鋼棒製ダンパー、鉛ダンパー	BS, 1F, RF	' 96. 07
4	神奈川県川崎市	RC造	14 階	鉛入積層ゴム	BS, 1F, 8F, RF	' 98. 03
5	東京都八王子市	RC造	2階	転がり支承、粘性ダンパー	BS, 1F	' 98. 05
6	北海道札幌市	RC造	20 階	標準積層ゴム、鉛入積層ゴム	BS, 1F, 7F, 12F, 20F	' 02. 11
\bigcirc	東京都立川市	RC造	17 階	鉛入積層ゴム、転がり支承	BS, 1F, 8F, RF	' 03. 06
8	宮城県仙台市	S造	9階	鉛入積層ゴム、標準積層ゴム	BS, 1F	' 06. 08
9	愛知県豊田市	RC造	14 階	鉛入積層ゴム、標準積層ゴム	1F, 2F	' 07. 01
(11)	大阪府大阪市	RC造	43 階	弾性滑り支承、標準積層ゴム	B1F, 1F, 14F,	,07.05
		NO _E		オイルダンパー、粘性ダンパー	29F, 43F	07.02
1	東京都港区	SRC造	9階	高減衰積層ゴム、オイルダンパー	B3F, 1F, 2F, RF	' 07. 03
(12)	長崎県諫早市	RC造	15 階	鉛入積層ゴム、弾性滑り支承	BS, 1F	' 07. 05

表-1 観測建物の概要

り支承と粘性ダンパーの組合せである。また、立川(⑦) は鉛入積層ゴムと復元力のない転がり支承の組合せであ る。大阪(⑩)は超高層の免震建物であり、弾性滑り支承、 標準積層ゴム、オイルダンパーと風対策用に粘性ダン パーを組み合わせた免震装置である。建物の多くは基礎 免震であり、1 階床下に免震層を持つ。豊田(⑨)、港区 (⑪)の建物は1階柱頭に免震装置を持つ。仙台(⑧)の建 物は免震告示による設計である。

2.2 観測システム

地震観測には、基本的にサーボ型加速度計を用いた地 震計を使用し、トリガーレベルは1 cm/s² に設定した。 仙台(⑧)、豊田(⑨)、諌早(⑫)には、半導体センサを用 いた地震計を使用し、誤作動を防ぐためにトリガーレベ ルは3 cm/s² に設定した。設置場所は免震層の上下を基 本とし、可能な限り屋上や中間階にも設置し、建物全体 の挙動を観測している。いずれもサンプリング周波数は 100Hz で記録した。本報告では、免震層下部で観測され た加速度記録より算定した計測震度が 0.5 (震度1)以 上のものを対象としている。

3. 観測記録の分析

3.1 観測記録と入力加速度

各観測地点の震度別記録数を図-2に示す。本報告で 示す震度は、免震層下部で観測された加速度記録より算 定した計測震度から求めた。観測記録は、震度別割合に 示すように震度1、震度2が多く、震度4の観測は全体 の約2%であった。最大計測震度は4.4であり、2008年 6月14日に発生した岩手・宮城内陸地震において、仙台 (⑧)で観測された。

観測地点からの震央距離と地震規模の関係を図-3 に示す。地震規模が大きくなるほど、遠くで発生した地 震も観測でき、1000km 以遠で発生した M8 クラスの地 震で震度1の記録がある。同規模の地震でも震央距離が 近いほど、震度が大きくなっており、270km 先の M8 ク ラスの地震は震度4となっている。

観測記録の震央距離と免震層直下の加速度(入力加速

度)の関係を図-4に示す。最大入力加速度は180cm/s² である。同規模の地震における入力加速度は、震央距離 が遠いほど小さくなる傾向がみられ、20km 先で発生し た M6 クラスの記録は100cm/s²に対し400km 以遠での

記録は10cm/s²以下となっている。

3.2 免震建物の応答

a. 分析概要

免震効果の違いを検討するために、免震建物の水平方 向の応答性状を比較した。免震装置による復元力特性の 違いを考慮し、種類別に①標準積層ゴムを主とする建物、 ②鉛入積層ゴムを主とする建物、③その他高減衰積層ゴ ムと転がり支承の建物の3つのグループに分け、免震層 上下で観測した、水平2方向の加速度記録を用いた。

b. 震央距離と応答加速度倍率

免震効果を、免震層直下の加速度(入力加速度)に対 する免震層直上の加速度(応答加速度)の比(加速度応 答倍率)で評価する。震央距離と加速度応答倍率の関係 を図-5に示す。

標準積層ゴムは、震央距離が 50km 以内の観測では加 速度応答倍率はおおむね1倍以下である。50km 以上で

は距離が遠くなるほど、加速度応答倍率のばらつきが大 きくなる傾向がある。

鉛入積層ゴムは、震央距離によらず加速度応答倍率の ばらつきが大きく、0.5~3倍に広がっている。

高減衰積層ゴムの港区(⑪)は観測期間が2年と短いた め観測記録数が少ないが、加速度応答倍率は鉛入積層ゴ ムの場合と似た傾向を示している。

転がり支承の八王子(⑤)は、距離によらず応答加速度 倍率は0.5倍以下であり、免震効果が大きい。

c.入力加速度と応答加速度

免震装置の種類により、震央距離と加速度応答倍率の 関係は異なり、標準積層ゴムでは、震央距離によりばら つきが見られた。一方、図ー4において、入力加速度は、 震央距離が遠くなるほど小さくなる傾向があった。そこ で、入力加速度と応答加速度の大きさの関係を図-6に 示す。図中には入力加速度と応答加速度が 1:1 となる線

を示す。

標準積層ゴムは、入力加速度が 30cm/s² 以上になると 応答加速度は低減されているが、30cm/s² 以下では応答 加速度が入力加速度より大きくなる場合がある。

鉛入積層ゴムは、入力加速度が 50cm/s² 以下のとき、 応答加速度はばらつきがあるものの、入力加速度と同程 度であり、免震効果が小さい。50cm/s² 以上の入力加速 度に対しては、応答加速度は入力加速度より小さくなっ ており、免震効果が大きい。

高減衰積層ゴムの記録は、図中の拡大図に示すように 10cm/s² 以下であり、入力加速度と応答加速度はほぼ同 じである。

転がり支承の八王子(⑤)は、入力加速度が小さい領域 から応答加速度は小さく、免震効果が大きい。この建物 は転がり支承を使用しており、微小振幅時から免震周期 が4.3 秒と長く、更に、粘性ダンパーを採用しているた め、微小振幅時から減衰性能を発揮するためと考えられ る¹⁾。

3.3 免震層の応答と入力地震動

免震効果は、入力地震動の特性により異なることが知

られている²⁾。

観測記録の多いつくば(①)において、地震規模が M5 以上の記録を対象に、図-6 a 中に示す免震効果が大き い記録と、小さい記録の2つの入力地震動の特性を調べた。

免震効果が大きい、茨城県南部地震の、応答スペクト ルを図-7 aに示す。2004 年 10 月に近方で発生した地 震(地震規模 5.7、震央距離 17km、計測震度 3.9)であ る。図中に示す固有周期は、観測記録の入力加速度と応 答加速度から求めた伝達関数により評価した。入力地震 動は、建物固有周期より短周期側の、0.3 秒付近にピー クを持っており入力加速度が大きく、免震効果が大き かったと考えられる。

免震効果が小さい、新潟県中越沖地震の応答スペクト ルを図-7bに示す。2007年7月16日に遠方で発生し た地震(地震規模 6.8、震央距離 203km、計測震度 3.9)である。入力地震動は、建物固有周期より長周期 側の、3秒付近にピークを持っており、入力加速度が小 さく、免震効果が小さいかったと考えられる。

4. 免震層の挙動と設計モデルの比較

4.1 免震層変位

免震層の挙動を確かめるために、免震層の変位を求め、 応答加速度、固有振動数、減衰定数との関係を、設計と 比較した。免震層の変位は、免震層上部と下部の加速度 記録から、10秒以上の長周期成分を除き、積分して求 めた。

標準積層ゴムと鉛入積層ゴムについては、比較的大き な入力加速度記録が得られた2つの建物を対象とした。

4.2 免震層変位と応答加速度

免震層の変位と応答加速度の関係を図-8に示す。免 震層の変位と応答加速度の関係は、応答加速度に建物質 量を乗じた慣性力を荷重と仮定すると、免震装置の復元 力特性にほぼ対応する。図中に、設計に用いた免震層の 復元力を慣性力と仮定し、建物質量で除して算出した応 答加速度を示す。標準積層ゴムの復元力特性はバイリニ アとし、鉛入積層ゴムと高減衰積層ゴムの復元力特性に は、歪依存型バイリニアを用いた。高減衰積層ゴムの復 元力特性は、ゴム層厚に対し変位 10%以上となる範囲 を示す。

標準積層ゴムは、免震層変位と応答加速度の関係はほ ぼ線形に対応している。つくば(①)の免震層変位の最大 値は 2.2cm であり、鋼棒製ダンパーの降伏変位の 3.3cm に達していない。

鉛入積層ゴムは、免震層変位の最大値は9.2cm であり、 2003 年 9 月 26 日に発生した十勝沖地震のときに、札幌 (⑥)で観測された。しかし、記録の多くは、免震層変位 が 1mm 以下であり、ほとんど変形してない。そのため、 応答加速度は入力加速度とほぼ等しかったと考えられる。 免震層変位が大きくなると、応答加速度はほぼ設計と対応している。

高減衰積層ゴムは、免震層変位が2mm以下であり、 免震層がほとんど変形していない。

4.3 免震層変位と固有振動数

免震層変位と固有振動数の関係を図-9に示す。固有 振動数は、免震層直下と直上の加速度記録から伝達関数 から評価した。図中に、設計に用いた免震層の復元力特 性から求めた、各変位における等価剛性と、建物質量か ら算出した振動数を示す。

標準積層ゴムのつくば(①)は、記録は設計よりやや高 めであるが、変位が大きくなるにつれて設計に近づく傾 向にある。

鉛入積層ゴムは、固有振動数は変位が大きくなるに つれて低くなる傾向がみられ、2 cm あたりから、設計

と一致してくる。

高減衰積層ゴムは、ばらつきがあるものの、変位が大 きくなるにつれて設計に近づく傾向にある。

4.4 免震層変位と減衰定数

免震層変位と減衰定数の関係を図-10 に示す。減衰 定数 h は、伝達関数 $H(\omega)$ の応答倍率を表す式(1)により、 固有振動数 (ω_0) における加速度応答倍率 ($\omega = \omega_0 \sigma$) とき)から評価した。

$$|H(\omega)| = \sqrt{\frac{1 + 4h^2 (\omega/\omega_0)^2}{\{1 - (\omega/\omega_0)^2\}^2 + 4h^2 (\omega/\omega_0)^2}}$$
(1)

図中に、設計に用いた免震層の復元力特性から求めた、 各変位における等価減衰定数を示す。

標準積層ゴムと鋼棒製ダンパーの組合せであるつく ば(①)は、ダンパーが降伏する前において減衰定数0.02 ~0.03の減衰性能があり、設計に用いる標準積層ゴムの

減衰定数と良く対応している。鉛ダンパーを合わせ持っ ている芦屋(22)は、免震層変位が小さい領域から、減衰 定数 0.1 と大きい。

鉛入積層ゴムは、降伏耐力にいたるまでは徐々に減衰 定数は増加し、降伏耐力に至った後は、塑性変形が進む

に連れて、相対的に減衰定数は減少している。変位の小 さい領域から減衰定数が大きい。免震層上下の伝達関数 から評価した減衰定数は、免震層の復元カモデルから評 価したものより、大きな評価となっている。これは、免 震層直上の応答加速度のみによる評価では、免震層の復 元力を十分に評価できていないためと考えられる。

高減衰積層ゴムは、変位が小さくばらつきがあるが、 標準積層ゴムに比べ減衰定数が大きい。

4.5 復元力からの減衰定数評価

免震層上下の伝達関数から評価した減衰定数は、設計 に用いた減衰定数より大きな評価となっていた。そこで、 上部構造の観測点が多い札幌(⑥)の記録を用いて、免震 層の復元力を求め、復元力特性から減衰定数を評価し比 較した。復元力は、1、7、12、20F で観測された加速度 記録を線形補間し、各階の質量に乗じて得られた慣性力 の和から求めた。十勝沖地震において、免震層変位が最 大のときの、変位と復元力の関係を図-11 に示す。

観測記録から得られた変位と復元力の関係を評価した 減衰定数は 0.22 であり、設計に用いた減衰定数 0.24 と ほぼ一致した。

5. まとめ

地震観測記録を分析し、次のことがわかった。

- i. 免震建物の免震効果(加速度低減効果)は、入 力地震動の特性により異なる
- ii. 大きく変形した観測記録における免震層の挙動
 は、ほぼ設計通りであった
- :iii. 微小変位における減衰定数は、鉛入積層ゴムが 最も大きく、つづいて、高減衰積層ゴム、標準積層 ゴムであった

6. あとがき

これまで多くの観測記録を得ることができた。また、 一部の建物では観測記録を用いて、設計モデルの妥当性 が検証できた。しかし、記録のほとんどが震度3以下の 小地震であり、多くの建物において地震時の挙動を確認 するには至っていない。大地震時における免震効果を検 証するには、今後も免震建物の地震観測を継続し、記録 を蓄積する必要がある。

【参考文献】

- 平野 晋、大塚 将、川井伸秦、舟木秀尊、「建物免 震システム(ERS)の開発」、奥村組技術研究年報 No.24、pp.49-54
- 安倍 勇、大塚 将、石井敏之、安井健治、原田 治、「免震構造の設計と信頼性の実証(第2報)」、奥 村組技術研究年報 No.14、pp.79-84

樹脂製インナーサッシによる二重窓の遮音性能

Sound Insulation Performance of Double Sash by Inside Sash using Acrylics

柳沼勝夫* 稲留康一*

要 旨

幹線道路や鉄道に近接する建物では、室内の騒音レベル許容値を確保するために二重窓を採用する場合が ある。旧来の二重窓は、外窓のサッシと内窓のサッシを一体で構成した一体型アルミサッシであったが、最 近では外窓のサッシをアルミ製、内窓のサッシを樹脂製とすることが多くなってきた。樹脂製サッシとする ことで、アルミサッシに比べてサッシ枠自体の軽量化は図ることができるが、障子板に板ガラスを用いてい ることから総重量はそれほど軽減されない。そこで、サッシの軽量化を図る目的で障子板にアクリル板を採 用したオール樹脂製のインナーサッシを開発し、二重窓の遮音性能を検討した。その結果、二重窓の障子板 間隔を変えることで障子板に板ガラスを用いた場合と同等の性能ランクを得られることがわかった。

キーワード:樹脂製インナーサッシ、二重窓、ガラス、アクリル

1. まえがき

1.1 樹脂製インナーサッシを用いた二重窓について

幹線道路や鉄道に近接する建物では、これらの騒音 が室内に伝搬しないようにするため、サッシや給気口 の防音化を求められることが多い。共同住宅の場合は、 デベロッパーによって指定される室内騒音目標値を満 たすために必要な遮音性能を有するサッシを選定して いる。このため、外部騒音レベルによっては、高度な 遮音性能が必要となり、二重窓を採用することもある。

旧来の二重窓は、アルミー体枠のものが採用されて いた。しかし、最近の共同住宅では、写真-1や図-1に示すような、アルミ製サッシと軽量で容易に施工 ができて熱的性能にも優れている樹脂製のインナー サッシとの組み合わせによる二重窓が多くなってきた。 ただし、これまでの樹脂製インナーサッシは、障子枠 が樹脂製であるためアルミ製に比べて軽量にはなるも のの、障子板に板ガラスを用いているため、総重量は それほど軽減されていなかった。そこで、障子板の軽 量化を目的に、障子板の素材にアクリルを用い、オー ル樹脂製のインナーサッシを開発した。

1.2 ガラスとアクリルについて

ガラスとアクリルの緒元を表-1に示す。アクリル は、ガラスに比べて軽量(密度がガラスの約1/2)で ある。障子板の面積を1.8m×0.9mと設定し、障子板 厚さを3mmとした場合、板ガラスを用いた場合は、 約12kgになるのに対して、アクリル板を用いた場合 は約6kgと1/2程度の質量となる。このため、イン アルミサッシ インナーサッシ

写真-1 樹脂製インナーサッシを用いた二重窓

*技術研究所

ナーサッシの操作が容易になると考えられる。しかし、 障子板にアクリル板を用いることによって、操作性は向 上するものの、遮音部材としての障子板が軽くなるため、 板ガラスを用いた場合よりも遮音性能が低下することが 懸念される。そこで、オール樹脂製を含め、樹脂製イン ナーサッシを用いた二重窓の遮音性能を検討した。

2. 樹脂製インナーサッシの障子板仕様の違いによる二 重窓の遮音性能

2.1 実験方法

当社技術研究所にある実大試験建屋¹⁾の測定室で実験 を行った。測定室は、外壁がALC板であり、室内は、軽 量鉄骨下地・石こうボード(クロス)仕上げとなってい る。また、天井は石こうボードによる二重天井(クロス 仕上げ)、床はフローリング(乾式二重床下地)となっ ている。外壁には、1800mm×1800mmの引き違いアル ミ製サッシ(ガラス厚6mm:カタログ性能 T-1 等級、 以下、「外窓」と称す)を設置している。樹脂製イン ナーサッシ(以下、「内窓」と称す)は、外窓の額縁を 利用して設置した。

内窓の仕様は、障子板の違いによる二重窓の遮音性能 を検討するため、板ガラス(厚さ3mmと5mm)、アク リル板(厚さ3mmと5mm)とした。また、厚さ3mm のアクリル板2枚と空気層 11mm で構成された複層ア クリル板や、アクリル板よりもさらに軽量な障子板であ る中空ポリカーボネート板(以下、「中空ポリカ板」と 称す)についても検討した。なお、中空ポリカ板は、横 材(ライナー)肉厚 0.4mm、縦材(リブ)肉厚 0.5mm で、 総厚6mmの中空構造板である。内窓障子板の仕様と障 子板仕様によるコインシデンスの限界周波数計算値²⁾を表 -2に示す。なお、コインシデンスの限界周波数 f_c (Hz)は、式(1)、式(2)を、共鳴透過周波数 f_m (Hz)は、 式(3)を用いて算出した値である。

$$f_c = \frac{0.55c^2}{t \cdot Cl} \tag{1}$$

$$Cl = \sqrt{\frac{E}{\rho}}$$
(2)

ここで、
$$f_c$$
: コインシデンス限界周波数(Hz)
 c : 音速(m/s)
 t : 板厚(m)
 Cl : 縦波速度(m/s)
 E : 障子板のヤング率(N/m²)

ρ: 障子板の密度 (kg/m³)

表-1 ガラスとアクリルの緒元

I	須目	アクリル	ガラス	単位
	密度	1.19×10 ³	2.5×10 ³	kg/m ³
	ヤング率	2.9×10 ⁹	7.0×10 ¹⁰	N/m ²
物理的性質	引張強さ	70.6~75.5	32.3 ~ 79.4	Mpa
	伸び	4~7	3	%
	曲げ強さ	108~118	392 ~ 785	MPa
	線膨張係数	7~8	0.8	$1/^{\circ}C \times 10^{5}$
熱的性質	熱伝道率	1.9×10 ⁻¹	7.5×10 ⁻¹	W/(m/K)
	熱貫流率	5.5	6.4	$W/(m^2/K)$
业学的林质	屈折率	1.48	1.52	-
儿子印泊主員	全光線透過率	93	92	%
障子板1枚当り (1.8m×0.9m、厚	[さ3mm) の質量	5.8	12.2	kg

※アクリルのヤング率は、20℃における値

表-2 内窓障子板の仕様

		障子板住	士様		コインシデンス	二重窓の共鳴透過周波数
内窓	材料	板厚	面密度	ヤング率	限界周波数	(障子板間隔100mm)
		(mm)	(kg/m ²)	(N/m ²)	(Hz)	(Hz)
単層	板ガラス	3	7.5	7.01010	4005	84
		5	12.5	7.0×10	2403	72
	アクリル板	3	3.6	a a 10 ⁹	13576	110
		5	6.0	2.9×10	8146	91
	中空ポリカ板	6	1.3	2.35×109	41303	171
複層	アクリル板	3-A11-3	7.1 (6mm分)	2.9×10 ⁹	6788 (6mm分)	85

$$f_{rm} = \frac{1}{2\pi} \sqrt{\frac{(m_1 + m_2)\rho c^2}{m_1 m_2 d}}$$
(3)

遮音性能の測定は、JIS A 1520「建具の遮音試験方 法」の内部音源法に準拠して行い、音響透過損失相当値 を求めた。測定点の概要を図-2に示す。測定対象は、 外窓単体、内窓単体、二重窓とした。なお、内窓単体と 二重窓の測定は、外窓の額縁を利用して各障子板仕様の 内窓を設置して行った。

2.2 実験結果

a. 外窓単体の遮音性能

外窓単体の音響透過損失相当値と板ガラス厚さ6mm の質量則計算値²⁾、またT等級線³⁾を図-3に示す。な お、質量則計算値は、式(4)、式(5)を用いて算出した値 である。

 $TL_0 = 20\log_{10} f \cdot m - 42.5 \tag{4}$

$$TL \rightleftharpoons TL_0 - 10\log_{10}(0.23TL_0) \tag{5}$$

ここで、TL₀: 垂直入射波に対する質量則(dB)

f : 入射音の周波数(Hz)

- *m* : 材料の面密度(kg/m²)
- TL : 拡散入射波に対する質量則 (dB)

サッシの遮音性能は、JIS A 4706:2000「サッシ」に 規定されている「T 等級」に音響透過損失(単位面積 当たりの遮音量)の値を当てはめて評価する。

ここで、外窓の遮音性能を T 等級で判定すると、カ タログ値と同様に T-1等級であることを確認できる。 周波数帯域別に遮音性能をみると、250Hz 帯域まで遮音 性能が増加している。また、エアタイトによって外窓の 気密性を高められているものの隙間が生じているため、 500Hz 帯域以上は、平坦な特性になっており、障子板の 質量則計算値よりも性能が劣っている。

b. 内窓単体の遮音性能

図-4、図-5に内窓単体の音響透過損失相当値を示 す。なお、各障子板の質量則計算値も併せて示す。

内窓の遮音性能は、250Hz 帯域までは、周波数が大き くなるにつれて遮音性能が増加している。しかし、内窓 はエアタイトもなく気密性が低いため、500Hz 帯域以上 では隙間の影響により質量則から外れて平坦な特性と なっており、高音域では障子板の仕様の違いによる差は ほとんどみられなくなる。なお、中空ポリカ板の場合は、 アクリル板よりもさらに軽量であるため(アクリル板厚 さ3mm と比較して面密度は 1/3 程度)、他の仕様より も大幅に性能が劣っている。

c. 二重窓の遮音性能

二重窓を構成し、内窓障子板の仕様を変えた場合の音 響透過損失相当値について、内窓障子板に板ガラス厚さ 3mm と5mm を用いた場合とアクリル板厚さ3mm と

 (厚さ6mm、面密度1kg/m²)

 125
 250
 500
 1k
 2k
 4k

 オクターブバンド中心周波数 (Hz)

図-5 内窓の遮音性能(複層アクリル板と中空ポリカ板)

0

5mm を用いた場合の結果を図-6に、内窓に複層アク リル板と中空ポリカ板を用いた場合の結果を図-7に示 す。なお、二重窓の外窓と内窓の障子板間隔は、 100mm である。また、参考として図中に外窓単体の遮 音性能とT等級線も併せて示す。

二重窓を構成すると、T等級のランクは、外窓単体の 遮音性能に対して1~2ランク向上している。また、周 波数帯域別にみると、外窓単体に比べて中音域以上の周 波数領域の性能が向上している。しかし、低音域では、 共鳴透過の影響により遮音性能の低下がみられ、特にア クリル板厚さ3mm や中空ポリカ板ような軽い障子板で は、遮音性能が外窓単体よりも低下している。また、こ の低下の度合いは、**表-2**に示した外窓と内窓の組み合 わせから計算した共鳴透過周波数により異なっているが、 高音域では、中空ポリカ板を除くと内窓単体の性能差が 小さいため、二重窓を構成しても遮音性能の差がほとん どみられない。よって、内窓障子板仕様の違いは、質量 はもちろんのこと、二重窓の共鳴透過周波数の部分に最 もよく表れ、二重窓の遮音性能ランクを決定する際の大 きな要因にもなっている。

3. 外窓と内窓の障子板間隔を広げた効果

3.1 実験方法

前章より、アクリルは、ガラスに比べて軽量である ため、二重窓を構成した場合に共鳴透過による遮音低下 が T 等級の評価対象周波数 (125Hz~4kHz 帯域) に影 響を与えやすいことがわかった。そのため、共鳴透過の 影響を評価対象周波数から外すための方策として、外窓 と内窓の障子板間隔を 100mm から 150mm、200mm、 250mm に設定し、それぞれの遮音性能を測定し、音響 透過損失相当値を求めた。また、式(3)より算出した外 窓と内窓の障子板間隔による共鳴周波数計算値を表-3 に示す。

3.2 実験結果

外窓と内窓の障子板間隔を変化させた場合の二重窓の

表-3 外窓と内窓の障子板間隔による共鳴透過周波数計算値

内窓	障子板仕様		外窓(板ガラス厚さ6mm)との組み合わせによる共鳴透過周波数 f ,,,(Hz)					
	材料	板厚(mm)	障子板間隔100mm	障子板間隔150mm	障子板間隔200mm	障子板間隔250mm		
単層	板ガラス	3	84	68	59	53		
		5	72	59	51	45		
	アクリル板	3	110	90	78	70		
		5	91	74	64	57		
	中空ポリカ板	6	171	140	121	108		
複層	アクリル板	3-A11-3	85	70	60	54		

※表中のAは、空気層厚を表す

図-6 二重窓(板ガラスとアクリル板)

音響透過損失相当値について、板ガラス厚さ3mm と5 mm、アクリル板厚さ3mm と5mm を図-8に、複層 アクリル板、中空ポリカ板を図-9に示す。

二重窓の障子板間隔を広げていくと、共鳴透過周波 数が低音域へ移行するため、遮音性能は全体的に向上し ている。この傾向は、障子板が板ガラスよりも軽量なア クリル板、また複層アクリル板の場合や中空ポリカ板の 場合でも同様な傾向を示している。しかし、低音域に着 目すれば、共鳴透過による遮音性能低下の影響は、外窓 と内窓の障子板の仕様と間隔から決まる共鳴透過周波数 の√2倍まで及ぶため、共鳴透過周波数の√2倍の値が 含まれる周波数帯域では、障子板間隔を広げても外窓単 体の遮音性能よりも性能が劣っている。ただし、障子板 間隔を広げていくことで、障子板間の空気ばねが小さく なり、音響的な結合が弱まるため、例えば、内窓障子板 に中空ポリカ板を用いて障子板間隔を 250mm に設定し た場合は、共鳴透過周波数が評価対象周波数に該当して はいるものの、低音域でも外窓単体より遮音性能が上 回っている。

また、T 等級による評価を行った結果をまとめたもの を表-4に示す。板ガラスよりも軽量なアクリル板を用 いた場合、同厚の板ガラスよりも共鳴透過の影響を受け やすいが、障子板間隔を 150mm とすることで、板ガラス を用いた場合と同等の性能ランクを得られている。しか し、アクリル板よりもさらに軽量な中空ポリカ板の場合 は、二重窓の障子板間隔を 250mm まで広げることでよ うやく T-3になり、板ガラスと同等の性能ランクを得 るのは、困難である。

外窓の障子板		板ガラス6mm (T-1)							
内窓の障子板		板ガラス		アクリル板		複層アクリル板	中広ゼリカセ		
		厚さ3mm	厚さ5mm	厚さ3mm	厚さ5mm	(3-A11-3)	中全ホリカ板		
	100mm	T-3	T-3	T-2	T-3	T-3	T-2		
陪乙肟即阿	150mm	T-3	T-3	T-3	T-3	T-3	T-2		
P早丁1次101P的	200mm	T-3	T-4	T-3	T-3	T-3	T-2		
	250mm	T-4	T-4	T-4	T-4	T-4	T-3		
						※表中のAは、	空気層を表す		

表−4 二重窓の「等級まとめ

4. まとめ

樹脂製インナーサッシによる二重窓の遮音性能を検討 した結果、以下のことがわかった。

- i. 樹脂製インナーサッシの障子板仕様の違いは、質 量はもちろんのこと、二重窓を構成したときの共鳴 透過周波数の影響範囲に最もよく表れる
- ii. 樹脂製インナーサッシの障子板にアクリル板を用い、オール樹脂製インナーサッシとした場合は、板ガラスに比べて軽量であるため、同厚の板ガラスを用いた場合に比べて共鳴透過周波数が高くなり、T等級の評価対象周波数に影響を与えやすい
- ご 二重窓の外窓と内窓の間隔を変えることで、内窓の障子板にアクリル板を用いても、板ガラスを用いた場合と同等の性能ランクが得られる
- iv. アクリル板よりもさらに軽量な中空ポリカ板を内 窓障子板に用いた場合は、二重窓の障子板間隔を変 えても、板ガラスを用いた場合と同等の遮音性能ラ ンクを得ることは困難である

5. あとがき

今後は、さらに遮光も考慮した二重窓の遮音性能についても検討していく予定である。なお、本研究は、フクビ化学工業と共同研究で行ったものである。

【参考文献】

- 1) 稲留康一、山上 聡、「床衝撃音予測手法に関する研究-実大試験床版の概要および実験結果-」、奥村組 技術研究年報、No.31、pp87-92、2005
- 2) 木村 翔、「建築音響と騒音防止計画(第三版)」、彰 国社、pp.96-97、pp.100、pp.107、1999
- 3) JIS A 4706 : 2000 「サッシ」
- 4) 柳沼勝夫、稲留康一、吉田賢二郎、喜久川珠佳、「ア クリル板を用いたインナーサッシによる二重窓の遮 音性能について」、日本建築学会大会学術講演梗概集、 D-1分冊、pp181-182、2007
- 5) 柳沼勝夫、稲留康一、吉田賢二郎、喜久川珠佳、「イ ンナーサッシの仕様の違いが二重窓の遮音性能に与 える影響」、日本建築学会大会学術講演梗概集、D-1 分冊、pp.237-238、2008
音環境プレゼンテーションシステムの開発

Development of Sound Environmental Presentation System

兒玉朗蘭* 稻留康一*

要 旨

ー般的に、音環境の性能は数値で示されるが、その数値が表す音環境を想像し、理解することは難しい。 そこで、数値データからシミュレーションを行い、シミュレーション結果から音を作成して実際に聞かせる ことにより、その音環境をわかりやすくプレゼンテーション出来ると考えた。そのような主旨のもとで開発 した遮音性能評価システムに「現地での収録機能」を追加し、さらに「設備系騒音」「音声の明瞭度」につ いてもシミュレーションができるようにした。本報告では、その概要について述べる。

キーワード:音環境、シミュレーション、プレゼンテーション、実音、性能評価

1. まえがき

音環境の性能は騒音源ごとに規定されるが、その 要求水準は「音圧レベル(騒音レベル)」や「音圧レベ ル差」など様々であり、数字では理解しにくい。例え ば、床衝撃音に対する性能を表す数値「LH-55」や 「LH-60」は室内で測定した「音圧レベル」をもとに した評価指標であり、サッシの性能を表す「T3」は 室外と室内の「音圧レベル差」をもとにした評価指標 である。これらの数値が示す意味は、建築学会が提案 している遮音性能基準¹⁾によって、ある程度理解す ることが可能である。しかし、室内の音環境を想像す ることは非常に難しく、これらの違いを明確にイメー ジできる人は少ない。さらに、音に対するイメージは 個々人で大きく異なるものである。このため、音環境 性能は数値だけでなく音としても表現することで、よ り良く理解できると考えられる。

当社では、既に遮音性能を音として体感できる「遮 音性能評価システム」を開発しているが、表現の高度 化や既存建物での対策効果を表現するために、バー ジョンアップを行った。本稿では、その概要について 述べる。

2. システム構成機器

2.1 各構成機器の概要

システムの外観を写真-1に、システムの構成を図 -1に示す。システムは収録部と再生部で構成されている。

機器構成は、ノート PC、オーディオインターフェ

写真-1 音環境プレゼンテーションシステムの外観

*技術研究所

図-1 音環境プレゼンテーションシステムの機器構成図

写真-2 収録用マイクロフォン

イス、マイクアンプ、マイクロフォン、ヘッドフォン 用アダプター、ヘッドフォンとした。また、ヘッド フォン用アダプターを用いることで音の試聴を複数人 同時に行うことができるように配慮した。

収録用マイクロフォンを写真-2に示す。現地で 収録を行うため、持ち運び・設置が簡単にできる組み 立て式のマイク固定器具を使用する方法を基本とする。 現地で収録した音は、直接ノート PC に取り込むこと を基本としている。しかし、現地の状況によって電源 等の確保が困難な場合も想定されることから、写真-2に示すようなデータレコーダを利用して音を収録し、 そのデータをパソコン内に保存する方法も整備した。

現地の状況に応じて、設置が可能な場合にはダミー ヘッドを使用した収録も可能である。なお、ダミー ヘッドとは、人間と同程度の大きさの頭を持つ人形で、 両耳にマイクを設置でき、人の頭などによる音の伝達 特性を含めて収録が可能である。ダミーヘッドを使用

写真-3 ダミーヘッドを使用した収録状況

写真-4 システムの収納状況

した収録例を**写真-3**に示す。**写真-3の**例では、工 場からの音を工場内会議室において収録している。

写真-4にシステムが持ち運び用の収納ケースに収 納された状況を示す。ダミーヘッドを除くシステム構 成機器は、全て専用のアルミケース (370(1)×540(w) ×260(h)[mm]) にコンパクトに収納できるため、持ち 運びが容易であり、現地での収録、シミュレーション、 プレゼンテーションを可能としている。

2.2 音源収録機能

既存システムでは、騒音源の音源データに市販音源 CD などのサンプル音を使用していたが、サンプル音 では、実際の状況を正しく表現できない(印象が大き く変わる可能性がある)ことが想定される。そこで、 本システムには対象建物における実際の騒音源データ を収集できるように収音機能を追加するとともに、シ ステムがコンパクトな可搬型となるような機器構成と し、現地でのシミュレーションを可能にした。

3. システムの概要

3.1 対象音源

本システムでは、①外部騒音、②室間騒音、③床衝 撃音、④室内騒音、⑤設備系騒音、⑥音声の明瞭性 (残響の影響)についての音環境をシミュレーションし、 結果を音で聞かせることが可能である。このシミュ レーションには、これまで実験棟・現場などで得た データや、研究成果を利用した予測手法を適用してお り、対策効果などの減音量と音源データがあれば、ど のような騒音源に対してもシミュレーションが可能で ある。前述した騒音源①~④については、既存システ ムにおいてもシミュレーションが可能であったが、新 システムではさらに騒音源⑤・⑥についてもシミュ レーションを可能にした。

3.2 対策効果の予測手法について

対策効果の予測計算には、これまでの研究成果を使 用している。①外部騒音、②室間騒音、③床衝撃音、 ④室内騒音については、これまでの研究成果を反映さ せた遮音性能データベースを使用している^{2)~7))}。 本報では、⑤設備系騒音、⑥音声の明瞭性(残響の影 響)について述べる。

a. 設備系騒音

給排気設備を経由して室内に伝搬してくる外部騒音 の概念図を図-2に示す。サッシの遮音性能が向上す るなど、建物の気密性が向上するに伴って、室内の暗 騒音が小さくなってきている。そのため、これまでは 問題にはならなかった、給排気設備を経由して室内に 伝搬してくる外部騒音への対応が求められるように なってきた。そこで、給排気設備を経由して室内に伝 搬する騒音の、伝搬予測法を整備した。

図-2 給排気設備を経由して室内に伝搬する外部騒音

予測に用いる給排気口の騒音対策効果は、当社の実 大試験建屋⁴⁾の給排気口に騒音対策部材を設置し、外 部の騒音と居室を想定した部屋の室内騒音を測定する ことで実験的に求めた。

室内騒音の予測は、採用する給排気口の騒音対策効 果(前述の実験により求めたもの)と、外部から給排気 口(ダクトがある場合にはダクトも含む)を経由して 室内に伝搬する騒音の伝搬特性を使用する。なお、給 排気口の騒音対策効果はデータベース化している。

b. 音声明瞭性(室内残響時間)

会議室やエントランスホールは、多目的に使用され るケースが多い。特に会議室は、一般的な会議(会 話)だけではなく、AV機器を用いたプレゼンテー ションの場としても利用される。このため、室内の残 響特性に対する要望も多様化しており、室内の残響時 間を予測する場面が増えている。

室内残響時間の予測は、室を構成する内装材の残響 室法吸音率、面積、室容積から求めることが可能であ る。しかし、残響時間のみでは試聴音の作成が困難で あるため、音響シミュレーションソフトを併用した予 測手法を採用した。

3.3 試聴音の作成

予測計算によって得られた対策効果をもとにフィル タを作成し、音源データと、このフィルタの畳み込み 演算によって試聴音を作成する。

なお、試聴音作成の際に用いる音源データは、新築 建物(建築計画時)の場合、音源②~④と⑥(室間遮 音、床衝撃音、室内騒音、音声の明瞭性)については、 サンプル音でも現実に即したシミュレーションが可能 である。一方、既存建物改修の場合、室内での音環境 を向上させたいという要望に対しては、現況における 現地収録音を用いることを基本とする。

3.4 システム使用手順

音環境プレゼンテーションシステムの使用手順の概 要を図-3に示す。使用手順は、音源データ部、予測 計算部(対策効果の計算およびフィルタの作成)、試聴 音作成部の3部に大別することができる。手順はそれ ぞれ独立しており別個に使用できるため、予測計算部 のみを設計時に使用することも可能である。

図-3 システム使用手順の概要

4. 音声の明瞭性に関するシミュレーションの例

ある事例において、音声の明瞭度を向上させるため に会議室の残響抑制を行った。このケースでは、音環 境プレゼンテーションシステムを利用して対策効果を 予測し、検証を行った。この事例について紹介する。

4.1 会議室内の音環境性能について

会議室や大空間では、室内の残響時間が長いため に会議や講演等で不具合を生じることがある。また、 会議室で行われる行為も多様化してきており、会議の みならず映像等も使用したプレゼンテーションルーム として使用するケースも増えてきている。

最近では、会議室の内装材として一般に使用される 岩綿吸音板(天井)、タイルカーペット(床)といった吸 音率の高い材料が意匠面の理由により採用されない場 合も多い。そのため室内残響時間が長くなる傾向にあ り、供用後に支障をきたし残響時間を抑制する提案を 求められることがある。

このようなケースへの対応としては、非吸音面を 吸音性の高い材料に変更することが有効である。こう いった変更は、室内の空調や照明などの設備との納ま りの調整や、工事期間中に部屋を利用できないといっ た問題が生じる。そこで、任意の場所に設置が可能な 「置き型吸音体」を開発した。置き型吸音体の概要を 図-4、および写真-5に示す。置き型吸音体は箱型 で、吸音面以外は厚さ 1.6mm の鋼板で構成している。 吸音面には多孔質吸音材を用い、吸音材の背後に空気 層を設けることで低音域の吸音効果を高めている。ま た、ケースに応じて、吸音面を複数設けることも可能 であり、この場合は内部に仕切り板を設置して背後空 気層を分割し、低音域での吸音効果を高めている。置 き型吸音体の設置個数は、設置前の残響時間の計算値、 もしくは残響時間の測定値と目標とする残響時間の差 から、必要等価吸音面積を求め、これに応じた数とす る。この吸音体を必要個数室内に設置することで、前

述した問題を生じることなく、残響抑制が可能となる。 音環境プレゼンテーションシステムを使用して事前 にシミュレーションを行った結果、吸音体を 10 個設 置することにより、残響の影響による聴感上の問題が 緩和されることを確認できたので、本事例における吸 音体設置個数を 10 個と決定し、確認のための測定を 実施した。

4.2 対象室の状況、および残響時間測定方法

会議室内に置き型吸音体を設置して残響時間を測定 し、さらに残響時間の違いを聴感で確認した。会議室 の状況を**写真-6**に示す。会議室の床面にはカーペッ トが敷かれていたが、天井には岩綿吸音板ではなく、 化粧石こうボードが貼られていた。

測定は、室内に設置したスピーカから吸音体設置前 と吸音体設置後に行った。測定方法は、M系列信号に よるインパルス応答積分法(シュレーダー法)とし、 室内6点の平均値を算出した。音源および測定点、置 き型吸音体の設置位置を図-5に示す。

4.3 測定結果

置き型吸音体設置前後の残響時間測定結果を図-6に示す。なお、吸音体の設置個数は10個である。

置き型吸音体を設置することで、2kHz 以下の周波 数帯域において、置き型吸音体設置前に比べ残響時間 が短くなっており、最適残響時間⁸⁾(500Hz 帯域にお

写真-5 置き型吸音体の外観

ける残響時間 0.8 秒) に近い値となった。人の声の周

図-5 測定位置

写真-6 会議室の状況

図-6 置き型吸音体設置前後の会議室内残響時間

波数に相当する 500Hz 帯域では、置き型吸音体設置 前後の残響時間の差が 0.14 秒程度得られており、さ らに、聴感による比較では置き型吸音体の効果が得ら れ、会議等の会話がしやすくなったと感じた。

以上により、話しにくい、聞き取りにくいといった 残響の影響による不具合について、音環境プレゼン テーションシステムを使用して適切に事前評価を行う ことにより、有効な対策を実施できることがわかった。

5. あとがき

本稿では、改良した音環境プレゼンテーションシス テムの概要と適用例について報告した。本システムの 適用場面として、以下の場合が考えられる。

i . 設計仕様の確認

ex. 建物の基本計画、実務設計における音環境 性能の確認

ii. 対策効果の程度の確認

ex.事業主など、専門知識をもたない人を対象 としたプレゼンテーション

今後、試聴音の再生方法についてさらに検討を進め る予定である。

【参考文献】

- 日本建築学会編「建築物の遮音性能基準と設計指 針・第二版」、技報堂出版株式会社、pp.1-51、 1997 年
- 2) 稲留康一、飛松幸彦、「側路伝搬音の予測手法に関する研究(その1)窓からの廻り込み音の予測手法」、奥村組技術研究年報 No.26、pp.93-98、2000
- 3) 稲留康一、飛松幸彦、「側路伝搬音の予測手法に関する研究(その2)外壁固体音の入射・放射面積の 影響と対策法に関する研究」、奥村組技術研究年報 No.27、pp.85-90、2001
- 4) 稲留康一、山上 聡「床衝撃音予測手法に関する 研究―実大試験床版の概要および実験結果―」、奥 村組技術研究年報 No.31、pp.87-92、2005
- 5) 稲留康一、「床衝撃音予測手法に関する研究―その 2 床仕上げ、内装仕上げの影響について―」、奥 村組技術研究年報 No.32、pp.69-74、2006
- 6) 飛松幸彦、西岡計成、木村真也、稲留康一、「遮音 性能評価システムの開発」、奥村組技術研究再年報 No.23、pp.109-114、1997
- 7) 稲留康一、萩原武彦、梅谷正彦「遮音性能評価シ ステムの改良」、奥村組技術研究所年報 No.28、 pp.55-60、2002
- 8) 前川純一、森本政之、阪上公博著、「建築・環境音響学 第二版」共立出版株式会社、pp.61-62、2004 年

断熱材の空気圧送充填による外壁の断熱強化工法

Insulation Enhancement of Building Outer Walls by Pressure Feeding

Insulating Material

茂木正史* 中村裕介*

要 旨

既存建物の躯体や内装材をできる限り生かしながら外壁の断熱性能を向上させる工法を開発した。本工法 は、外壁躯体(コンクリート)と内装材(ボード等)の隙間に発泡ビーズ(ビーズ法ポリスチレンフォームの原 料)や PET(ポリエチレンテレフタレート)繊維などの断熱材小片を空気圧送して隙間を充填することにより、 壁の断熱性能を向上できる。断熱材を空気圧送するので内装材の損傷を抑えて施工できる。さらに、関東や 関西地域では、条件によって既存住戸の断熱性能を「住宅性能評価基準の温熱等級」で1ランク程度向上で きる。PET 繊維を使用する場合は遮音性能も向上し、ペットボトルのリサイクルにも寄与できる。

キーワード:外壁断熱性、断熱材空気圧送、発泡ビーズ、PET 繊維

1. まえがき

近年、環境への配慮から建物の省エネルギー化が求 められ、循環型社会への移行をめざして既存建物の有効 活用が進められている。省エネルギーの観点から建物の 外壁の断熱仕様について見ると、「エネルギーの使用の 合理化に関する法律」(昭和55年)を発端に、「住宅の 省エネルギー基準と指針」(昭和55年)が制定された後、 平成4年には「住宅の新省エネルギー基準と指針」¹⁾の 制定、さらに平成11年には「住宅の次世代省エネル ギー基準と指針」²⁾が制定されるなど、省エネルギー規 準の改正強化が進められてきた。その中で、外壁の断熱 性能の基準もより性能の高いものへと改定されてきてい る。一方、既存建物の有効活用の面においては、これま で行われてきた小規模・大規模改修において、仕上や構 造を主目的として改修を求めていた声が、近年、新築と 同等もしくは新築以上に安全、快適にしたいという、よ り高度な要求へと移行する傾向にある。このような状況 にあって、図-1に示すように建物ストックは増加傾向 にあり、その中にはリニューアルの際に壁の断熱性能の 向上を必要とする建物が相当数あると推測される。そこ で、外壁躯体(コンクリート)と内装材(ボード等)の隙間

図-1 集合住宅の着工戸数とストック数の推移

*技術研究所

に発泡ビーズ(ビーズ法ポリスチレンフォームの原料) や PET(ポリエチレンテレフタレート)繊維などの断熱材 小片を空気圧送して隙間を充填することにより、壁の断 熱性能を向上させる工法を開発した。本報告では、開発 工法の概要や材料の選定、空気圧送方法、ならびに断熱 性能や遮音性能の向上についての実験や解析による検討 結果を述べる。

2. 工法の概要(従来式との比較)

過去に建設された建物の外壁には、断熱材を貼ったり 吹き付けた外壁躯体に、木製や金属性の下地を組み、そ の上に内装ボードを貼る方法や、団子状の接着材を一定 の間隔で塗りつけ、壁とある程度の間隔を取って内装 ボードを圧着する GL 工法と略称される工法が一般的に 使用されている。いずれの工法においても、外壁躯体と ボードの間に隙間があるので、この隙間に断熱材を充填 することにより壁の断熱性能が向上する。このような観 点から、従来は隙間に断熱材であるウレタンを注入する 工法が行われてきた。しかし、この工法は、内装ボード に 30cm 程度のピッチで孔を空け、その孔よりウレタン を注入するため、充填状況を確認しながらの作業に時間 を要し、また、仕上げ時にはそれらの孔をすべて補修す る作業が必要となる。これらの課題を解決する方法とし て、図-2に示すように内装ボードの上下に材料供給用 と排気用の孔を空け、発泡ビーズなどの断熱材小片を躯 体と内装ボードの隙間に空気圧送する工法を開発した。 この工法を適用することにより、ウレタン注入よりも作 業時間が短縮でき、内装ボードの補修箇所も格段に少な くできる。

図-2 断熱材吹き込み工法の概要

3. 断熱材料の選定

断熱材料に求められる性能は断熱性能、充填性能(空 気圧送性)であり、コストも考慮しながら適用する材料 を選んだ。まず、既製品の中から候補となる断熱材料を 抽出した。抽出したのは、ビーズ法ポリスチレンフォー ムの原料である発泡ビーズ(EPS)、解体現場から回収さ れたウレタン破砕品、ペットボトルから再生される PET 繊維、さらに医療用に加工された加工製品の綿球 である。以上の材料について断熱性能と充填性能を試験 し、適用可能な材料を選定した。

3.1 断熱性能

断熱性能は、JIS A 1412-2「熱絶縁材の熱抵抗及び熱 伝導率の測定方法-第2部:熱流計法」に準拠した断熱 性能の計測を行って、壁に充填された状態での材料の熱 伝導率λ(W/m・K)を求めた。試験体の寸法は、300mm ×300mm×50mm(厚さ)である。発泡ビーズは粒径の 違いで2種類、ウレタン破砕品は形状2種類、PET 繊 維については、形状および密度をパラメータとして4種 類とした。直張り用接着剤(通称 GL ボンド) について も、同様の試験体を製作して断熱性能を測定した。試験 体の外観を写真-1に示す。No3、No4、No5、No6、 No8 など粒径が大きい場合、形状が不揃いの場合には、 断熱材間の隙間が目立っている。粒径が小さい場合にも 隙間は存在しており、断熱性能は断熱材部分と空気部分 を合成した値として評価される。表-1、図-3に断熱 性能測定用の試験体の仕様と測定結果を示す。密実な状 態と小片を充填した場合の断熱性能を比較すると、ウレ タン破砕品は密実な発泡ウレタンより 30%程度断熱性 能が下がるが、EPS ではほとんど変わらない。また、 PET 繊維は、その密度や形状によって断熱性能が異 なっている。その傾向は、隙間(空気部分)が目立つも のほど断熱性能が低くなっている。また、表-1には各 断熱材の性能が「住宅の次世代省エネルギー基準と指 針」²⁾に示されている断熱材の性能別グループのいず れに属するかも示す。この範囲内に含まれない材料は、 断熱性能的に適用不可と判断した

3.2 充填性能

断熱強化を行う外壁の内装壁下地は、一般的に直張り 工法(GL 工法)と軸組工法(軽鉄、木軸)の2タイプ の組立方法に大別される。そこで、各タイプの試験壁を 作成して充填性能確認のための要素実験を行った。使用 した断熱材は断熱性能の測定で合格した材料である。次 に、充填性の要素試験に合格した材料について、実大の 壁を製作して実証試験を行った。

a. 充填試験

(a) 吹き込み装置の仕様

充填試験における試験壁は裏側を石膏ボードとし、表 面は壁内の充填状況を確認できるようにアクリル板仕上 げとした。各下地の組み立ては「建築工事標準仕様書 JASS26 (内装工事)」に準拠した。各下地の仕様を表ー **2**に示す。

写真-2に木下地における充填試験状況を示す。PET 繊維、EPS、破砕ウレタンのいずれの断熱材も問題なく 充填されている。軽鉄下地についても同様な結果であっ た。これらの下地は表-2に示すように断熱材を充填す

写真-1 断熱性能測定試験体(GL ボンド、発泡ウレタン、コンクリートは省略)

No.	試験体	熱伝導率 λ (W/m·K)	断熱材のグループ分類*
No.1	EPS(2.3):粒径2.3mm	0.033	D:λ(0.034-0.029)
No.2	EPS(3.6):粒径3.6mm	0.039	C:λ(0.040-0.035)
No.3	PET8(25):繊維長8mm、密度25kg/m ³	0.074	不適
No.4	PET8(50):繊維長8mm、密度50kg/m ³	0.052	A1:λ(0.052-0.051)
No.5	PET15(13):繊維長15mm、密度13kg/m ³	0.070	不適
No.6	PET15(34):繊維長15mm、密度34kg/m ³	0.038	C:λ(0.040-0.035)
No.7	破砕ウレタン(小):6mmアンダー	0.039	C:λ(0.040-0.035)
No.8	破砕ウレタン(大):6mmオーバー(~50mm程度)	0.039	C:λ(0.040-0.035)
No.9	綿球(7.0):粒径7mm	0.073	不適
No.10	GLボンド:密実状態	0.43	B:λ(0.045-0.041)
No.11	現場発泡ウレタン	0.028	E:λ(0.028以下)
No.12	コンクリート	1.6	_

表-1	断熱性能測定試験体の仕様と測定結果
-----	-------------------

*住宅の次世代省エネルギー基準と指針²⁾

る壁の厚さが 35~50mm で、断熱材の粒径に比べて十 分大きいことからスムーズな充填ができた。

下地の種類	壁厚(mm)	ピッチ(mm)
GL下地	10	250(水平、垂直)
木下地	35	200(水平)
軽鉄下地	50	300(水平)

表-2 下地の仕様

写真-2 木下地における充填試験状況

ハンディータイプのブロアを使った断熱材の吹き込み 装置にでは、GL 下地工法に適用した場合、写真-3に 示すように充填不足の部位が残った。このことから、吹 き込み装置について、以下の課題があることが判明した。

- i. 送風機の本体で詰まる
- ii. 材料供給口で詰まる
- ⅲ. 壁内で詰まる
- iv. 静電気によりホースの材料が付着する

木下地や軽鉄下地は GL 下地に比べて良好な断熱材充 填ができるので、GL 下地を対象に工法の検討を進める こととした。GL 下地における充填は 1.8m(H)×0.9m (W)の石膏ボードに対して、材料の供給口1箇所でその ボード部の壁内を充填することを目指した。上述の課題 については、以下のように対策した。

i. 送風機の本体で詰まる現象の対策

送風機の本体で詰まる現象は断熱材を痛めない羽 根形状を有し、粉体の空気輸送での利用例があるプ レートファンを使用することで解決した。

ii、iii. 材料供給口や壁内で詰まる現象の対策 材料供給口や壁内で詰まる現象は材料の種類、材 料の形状(寸法)と材料の供給量に関連する。材 料の供給量は風量で調整できると考え、供給口で 詰まらない程度まで風量を落とすと、壁内部での 風量が不足して充填できない部分が発生した。そ こで、空気量と材量の供給量は別々に調整するこ とにして、供給量可変の材料送り装置と、イン バータによる送風量可変の送風機を組み合わせた

写真-3 GL工法における充填不足

実験を行った。この方法のにより、上述したよう な材料が詰まる現象が解消できた。

iv. 静電気でホースに材料が付着する現象の対策
 静電気でホースに材料が付着する現象は、帯電
 防止型のホースを使用することで解決した。

このようにして選定した送風機の仕様(例)を表-3 に、吹き込みホースの仕様(例)を表-4に、材料送り 装置の仕様(例)を表-5に示す。材料送り装置は、振 動を与えて定量を送りだす仕組みとなっている。また、 吹き込み装置と試験状況を写真-4に示す。写真は EPS の充填試験であるが GL ボンド周りもほぼ 100%充填さ れている。

表-3 送風機の仕様(例)

羽根車の種類	出力(kW)	最大風量 (m ³ /min)	最大静圧 _(kPa)	質量 (kg)
ターボ	0.4	12	2.01	22

表-4 吹き込みホースの仕様(例)

用途	口径	仕様
粉体輸送用	50A または 90A	軟質樹脂製 帯電防止

表-5 材料送り装置の仕様(例)

ホッパー体積	供給量	寸法	質量
(L)	(L/min)	(mm)	(kg)
20	*0~53	300 × 300 × 636(H)	30

*:EPS(3.6)の場合

(b)各材料の充填性

充填性試験から得られた各材料の充填性を表-6に示 す。EPS は、寸法によらず充填性に優れている。破砕ウ レタンは、小片であれば充填可能であるが、粉体が含ま れるため扱いにくい。PET で 15mm の長繊維は GL 工法 には充填できなかった。しかし、PET 繊維は球体にす れば充填できるので、加工工程で改良を加えている。

写真-4 吹き込み装置と試験状況

b. 適用材料の決定

候補とした各材料の熱伝導率および充填性、ハンドリ ング、コストの観点から、本工法に使用する材料を EPS と PET 繊維(密度 100kg/m³の改良品)に絞った。EPS は流動性に優れ、球状のため粒径の違いによる充填率変 化はないため、隙間からの漏れのないよう、粒径の大き いものを使用することとした。

3.3 実大壁試験

W3.5m×H2.8m の実大壁を製作して PET 繊維と EPS の充填試験を行った。壁構成は、RC150 mm+直貼り工 法(中空層 t15 mm程度) +PB12.5 mmである。写真-5に 実大壁試験の状況を示す。断熱材充填後に壁からの抜き 取り検査によって充填率を確認した。写真-5には 300mm×300mmの抜取り部も示している。抜き取りは GL ボンドを含む部分と含まない部分について行った。 充填率は、抜き取り部の材料の体積をその部分の中空層 の体積で除して求めた。充填率を表-7に示す。また、 準備などを含まない充填速度を表-8に示す。

写真-5 実大壁試験体の試験状況

表-7 充填率

材料	GLボンド周り (%)	ボンド無し部 (%)	平均 (%)
EPS	98.2	99.3	98.8
PET	92.1	94.2	93.2

表-8 充填速度

材料	壁面積 (m ²)	充填時間 (min)	充填速度 (m ² /min)	
EPS	9.8	13	0.75	
PET	9.8	17	0.58	
作業者:2名				

4.遮音性能の評価

直貼り工法は施工性とコストに優れた工法だが、遮音 性能が低下するため、現在では集合住宅の界壁に用いる ことは少ない。ただし、改修対象となるストック建物で は頻繁に使用されていた工法であった。そこで、このよ うな壁には断熱材を充填することにより、遮音性能の向 上が期待できるため、JIS A 1416「実験室における建築 部材の空気音遮断性の測定方法」に準拠して、充填完了 前後の音響透過損失の計測を行った。計測結果を図-4 に示す。RC150 壁に GL 工法を施すと遮音性能が1ラン

試除休	 右 埴性(流動性)	正 洋性	ハンドリング 国国への影響	その曲
武 词火 平	1.呉に(加助に/	표정면	ハンドリング、同西への影音	ての他
			〇飛散しやすいが扱いは良い	
EPSビーズ	◎問題なし	◎問題なし	帯電しやすいため加湿必要	_
	△形状にばらつきが多く	△圧送途中で	△粉体も含まれるため	
破砕ウレタン(大)	充填率が安定しない	詰まることがある	飛散多く周囲が汚れる	—
			×隙間から漏れて飛散し	
破砕ウレタン(小)	〇良い	〇良い	周囲が汚れる	—
	△長繊維は直貼りエ法不可		△短繊維の飛散が懸念	
PET繊維	小型化により適用可か	〇良い	バインダー増量で適用可か	—
綿球	〇良い	O 良い	〇良い	×高コスト

表-6 各材料の充填性

ク下がるが、空隙に PET 繊維を充填すると RC150 と同 等のランクに改善された。しかし、その隙間に EPS を 充填しても変化がなかった。

2,200 1,600 900 006 ・地域区分IV ・ 温熱等級3 600 • 中間階 12,800 . 500 断熱強化 900 100 211 共用 押ノ 006 外部 700 居間・食事室 和室 00/ W=2000 [355] H=1900 米軽ハッキュ」パルコニー 946m² W=1600 H=1900 200 3,600 2,700

図-5 評価対象住戸

表-9 評価建物の壁の構成

外壁の構成材料	熱伝導率 (W/mK)	厚さ (mm)
コンクリート	1.6	180
吹付硬質ウレタンフォーム(現場発泡品)	0.026	25
既設(中空層)⇒EPS断熱強化	0.039*	15
石膏ボード	0.22	95

*EPSの熱伝導率はGLボンド分を割り増し

表-10 断熱補強の効果

ケース	熱損失係数 温熱等級		侵入熱量
	$W/(m^2 \cdot K)$	等級	%
既存	2.971	3	100
EPS充填	2.698	4相当	91

iv. 集合住宅の中間階妻側の住居に適用した場合の試 算で、侵入熱量を約10%低減できる。

最近の建設関連の助成金が新築工事から改修工事に シフトしているなど、既存建物の有効活用がさらに求め られる状況にある。このような流れの中で、今後本工法 を積極的に適用していきたい。

【参考文献】

- 1) 財団法人住宅・建築 省エネルギー機構、「住宅の新 省エネルギー基準と指針」、1992.3
- 2) 財団法人建築環境・省エネルギー機構、「住宅の次世 代省エネルギー基準と指針」、1999.11

5. 集合住宅における適用効果

既存の集合住宅に本工法を適用した場合の効果を解析 で検討した。対象住戸のプランを図-5に示す。対象住 戸は地域区分IVに立地する集合住宅の住戸で、中間階妻 側に位置し、面積は 80m²、住宅性能表示制度の温熱等 級は3である。壁の構成を表-9に示す。既設壁の中空 層に EPS を充填する。効果は熱損失係数で評価する。 表-10 に断熱補強の効果を示す。侵入熱量は EPS を充 填することにより約 10%減少し、等級は3から4相当 に向上する。

6. まとめ

外壁のコンクリート躯体と内装ボードの間の隙間に断 熱材を空気圧送して断熱強化する工法を確立した。

検討結果を以下に示す。

- i. 充填できる断熱材は既製品の EPS (発泡ビーズ) および既製品に改良を加えた PET(ポリエチレンテ レフタレート)繊維である
- ii. 材料供給装置は、送風量と材料の送り量を別々に
 制御できるシステムを組み立てることによって圧送
 途中での材料の閉塞を回避できる
- iii. PET 繊維を充填した場合には、壁の遮音性能の 向上にも寄与できる

簡易区画壁と局所集塵による工事粉塵の拡散防止 - エアパネル区画とプッシュプル集塵、ミスト沈塵-

Controlling Diffusion of Dust using Partition Walls and Local Dust Collection

- Air Panel Partition, Push-pull Dust Collection, and Mist Dust Settlement -

中村裕介*茂木正史*小河義郎*南 尚吾**

要旨

既存建物の有効利用が進められる中、建物を使用しながらリニューアル工事を実施するといった場面では、 工事粉塵対策が重要項目となる。そこで、粉塵の拡散防止と捕集除去による粉塵対策技術として軽量エアパ ネルを用いた区画形成工法、および局所的に集塵するプッシュプル集塵システム並びにミストによる沈塵シ ステムを開発し、それらの組み立ての簡易性や粉塵の拡散防止性能を確認した。その結果、簡易区画につい ては、従来採用されてきた軽鉄下地に石膏ボードを貼る工法と比べて、組み立て時間は 1/12 以下となり、 さらに廃棄物を出さないなどの優れた効果を確認した。プッシュプル集塵については、従来から行ってきた 風管で給排気する集塵方式に比べて、室内の粉塵濃度を 1/4 以下に押さえることを可能にした。ミスト沈塵 については、長時間使用する場合の廃水処理が必要となるため適用場面が限定されるものの、粉塵の拡散防 止効果を確認した。

キーワード:エアパネル、プッシュプル、ミスト

1. まえがき

建設工事中の作業環境には、アーク溶接や金属等の研 磨・切断、耐火被覆材の吹付け、躯体コンクリートの切 断・削孔、床清掃などで発生する多種の粉塵が存在する。 工事現場における粉塵対策は古くからの課題であり、安 全衛生環境の改善に努めることは管理者の責務である。 また、建物を使用しながらのリニューアル工事に関連す る技術提案が増加したことから、粉塵対策への取り組み が重要視されるようになった。

粉塵対策には、粉塵発生エリアの封じ込め、散水によ る飛散抑制、集塵装置による除去などの方法がある。建 設現場では種々の対策を実施しているが、工事中に発生 する粉塵は場所が不特定であること、作業スペースが狭 小であったり、複雑な形状であるケースが多いこと、短 期間で作業自体が終わることなどから、効率の良い対策 を運用できないケースが目立っている。そこで、現場内 の各所で発生する粉塵に、迅速に確実に対応できる集塵 方法の確立を目的として、組み立てに手間の掛からない 区画工法、集塵技術などの3種類の異なった対策技術を 開発した。

本報では、各工法の概要と適用範囲のほか、組立実証 実験、および集塵性能に関する室内実験結果について報 告する。

2. 粉塵障害防止に関する規制等

浮遊粉塵の人体への影響は深刻であり、大気汚染防止 法では粉塵を「物の破砕、選別その他の機械的処理又は たい積に伴い発生し、又は飛散する物質」と定義して、 揮発性有機化合物や自動車排出ガス等と共に規制対象物 質としている。特に、発ガン性物質のアスベストを特定 粉塵に指定しているが、一般粉塵でも長期間吸入するこ とで塵肺を発症する危険性がある。建築物における「衛 生的環境の確保に関する法律」では特定建築物の環境衛 生管理基準として、浮遊粉塵量 0.15mg/m³以下を規定し ている。また、日本産業衛生学会では産業労働環境の粉 塵許容濃度として、粉塵の種類ごとに2~10mg/m³を勧 告値としている。ただし、人間の感覚指標¹⁾では、粉 塵濃度 0.15mg/m³ 以上で多くの人が「汚い」、0.2mg/m³ 以上で「全く汚い」と感じることから、各数値は非常に 大きく設定されている。厚生労働省によると、粉塵障害 の防止に関する行政指導の結果、昭和 55 年当時 6,842 人であった塵肺の新規有所見労働者数が平成 18 年では 252 人となるなど飛躍的に改善されたものの、近年にお いては横ばい傾向²⁾になっている。そこで、より粉塵 対策を推進させるため、平成 20 年度から5か年計画と して第7次粉じん障害防止総合対策を策定し、労働基準 監督署が粉塵対策の指導を実施している。

*技術研究所 **東日本支社建築工務部

3. 粉塵拡散防止技術の概要

3.1 簡易区画工法

a. 技術概要

工事エリアを区分けするために仮設間仕切り壁を設け る場合、表-1に示す官庁営繕改修仕様書³⁾のA種、 B種が一般的である。この場合、壁としての構造耐力も 必要であるため、コンクリート躯体にアンカー留めする 軽鉄下地を組むが、構築に手間とコストが掛かり、作業 終了後の廃棄処理も問題となる。C種でも同様に下地組 みの手間が掛かる。

そこで図-1のような各スパンや局所で粉塵を封じ込 めたい場面において、簡便な区画壁の構築を目的として、 軽量エアマットを応用したエアパネルを用いる工法を考 案した。空気充填により剛性の高い平板となるエアパネ ルの内部は写真-1に示すように、両面シートを丈夫な 多数の中糸で繋いでいる。表-2に示す仕様・形状は、 人体に基づく尺度4)を参考にして決定した。また、繰 返し転用可能な耐久性、遮音性も考慮した。適用高さは、 建築基準法で規定する居室の最低天井高さ 2,100mm か ら、事務所ビルの基準階で多い 2,700mm に天井ふとこ ろ 1,000mm⁵⁾ を見込んで 3,700mm まで調整できるよう に、写真-2に示すようにエアパネルを2枚張り合わせ てスライドさせる方式とした。また、パネル小口はウレ タン緩衝材とし、天井の不陸を吸収する仕組みとした。 1セット分の構成材料を表-3に示す。エアパネルによ る区画工法の特徴を以下に示す。

- i. 組立作業は空気充填のみで高所作業がないため、 簡便な設置・移動・撤去が可能である
- ii. パネル単体で自立、躯体や仕上げを傷めない
- iii. 高さはスライド式で 2,100~3,700mm に対応できる
- iv. 繰り返し転用でき、廃棄物を出さない
- v. 防音シート同等の遮音性能となる 21dB の騒音低 減効果を持つ

表一1 优	反設間仕切	IJ	等3)	
-------	-------	----	-----	--

種別	仮設間仕切り
A種	軽量鉄骨材等により支柱を組み、 両面に合板張り又はせっこうボード張りを行い、 内部にグラスウール等の充填を行う
B種	軽量鉄骨材等により支柱を組み、 片面に合板張り又はせっこうボード張りを行う
C種	短管下地等を組み、全面シート張りを行う

表一2	エアパネルの什様
1 4	

項目	仕様·形状
幅	1,400mm
高さ	2,100mm (~3,700mmまでスライド調整)
厚さ	67mm
重さ	3.0kg/m ²
所要内圧	0.05MPa

表-3 区画パネル1セットの構成

名 称	仕様・形状	数量
安定脚	アルミ製パイプゆ1mm	2
エアパネル	基布+樹脂 幅1,400×高2,100mm	2

図-1 区画壁の適用場面

写真-1 エアパネル断面

写真-2 区画パネル(ch=2,500mm)

b. 組立確認試験

構築手順と作業時間を把握するため、組立試験を 行った。組立は区画パネルを 10 セット用いて、粉塵発 生エリアの周囲を局所的に囲えるように、縦横 4,200mm×5,600mm、高さ3,300mmとした。使用したエ アコンプレッサの仕様を表-4に示す。比較的騒音レベ ルが小さく、コンパクトなものを選定した。1台で2枚 のエアパネルへの空気充填を行った。写真-3に区画形 成状況を示す。

c. 遮音性能

エアパネルで区画することによる騒音の低減効果を 実験的に確認した。測定は、鉄筋コンクリート造の室内 扉開口部、幅1,000×高さ2,000mmを利用して挿入損失 法により行った。図-2に測定方法の概念図を示す。比 較試験体には、区画形成時に使用する一般的な材料であ る写真-4の防音シートのほか、ブルーシートと石膏 ボード厚9.5mmを用意した。なお、写真-5に示す通 り、エアパネルは2枚の連結部分を開口中心に配置して、 組み立て完成時に準じた形状で測定を行った。

測定結果を表-5に示す。エアパネルの遮音性能は、 防音シートと同等の 20dB 程度の低減効果があることが 分かった。粉塵が発生する作業にともなう騒音の対策に も有効である。

写真-3 区画形成状況

図-2 挿入損失法

写真-4 防音シート

写真-5 エアパネル

表-4 エアコンプレッサの仕様

項目	仕様
電源	AC100V
負荷電流	13A
出力	825W
最高使用圧力	0.96MPa
タンク容量	12L
吐出空気量	95L/min (吐出圧力0.5MPa)
騒音レベル	70dB(A) r=1,000mm、65dB(A) r=3,000mm
サイズ	495 × 418 × 230mm
重量	22.5kg

表-5 遮音性能

	音源	試験体 なし	ブルーシート	防音汁ト	エアパ 祉 2枚連結	PB t9.5
dB(A)	101	99	94	79	78	80
差			5	20	21	19

- 3.2 プッシュプル集塵システム
- a. 技術概要

局所集塵方法は既往の技術^{6) 7) 8)}を参考に、現場で 発生する粉塵種や機器重量を考慮して、図-3に示す プッシュプル集塵システムとした。この集塵システムは、 粉塵源を挟んで送風フードと受風フードを設置し、低風 速の気流で粉塵を誘導し拡散させずに集塵できる方式で ある。フード給排気面の開口率は、図-4に示すように 気流解析結果を参考にして決めて、システムを構築した。 また、図-5のように、フードの効果的な配置について も気流解析の結果を参考にした。プッシュプル集塵シス テムの特徴を以下に示す。

- i.フードの給排気面は幅 1,800mm×高さ 900mm で あり、大きな風道形成により粉塵の拡散を防ぐ
- ii. フードは帆布と中空アルミパイプの組立式で、軽 量でハンドリングが良い(写真-6)
- iii. 送風機と風管に組み立てたフードを接続するだけ で使用が可能である
- iv. 給気面と排気面は開口率の異なるスクリーンシー トで構成して面風速を制御する
- v. 専用スタンドでフードの高さ(最高 2,500mm) と角度を調整し、高所にも対応可能である

写真-6 プッシュプルフード

図-3 プッシュプル集塵システム

図-4 気流解析による給気面風速の検討例

図-5 気流解析による柱切断時の配置検討例

b. 集塵性能

プッシュプル集塵システムによる拡散防止と集塵性能 を確認するために室内実験を行った。図-6に実験概要 を示す。粉塵源には、コンクリート切断時に発生する粉 塵と同様の拡散性状と濃度である表-6のスモークマシ ンを使用した。発煙量は 10m³/min とした。プッシュプ ルによる粉塵源近辺の風速を層流が形成される 1.0m/s 程度になるように、発煙源との離隔距離を送風フード 3,000mm、受風フード 2,000mm とした。軸流送風機は、 表-7に示す汎用品とした。バッグフィルタは厚手の フェルト素材で、長さ 530mm、口径 330mm、捕集効率 99%である。粉塵計はデジタル粉塵計(柴田科学 P-5L 型) 4台用いて空間的な変動を追跡した。なお、比較 ケースは、送風機と風管による集塵方式とした。

カッコ内数値は発煙からの距離を示す

図-6 集塵実験概要

表-6 スモークマシン仕様 表-7

項目	仕様
電源	AC100V
スモーク能力	10~31m ³ /min
スモーク粒径	ϕ 10 μ m
スモーク液	グリコーゲン類
到達距離	3,000mm
サイズ	296 × 213 × 172mm
重量	5.0kg

送風機仕様

内 口	IL 1W		
電源	AC100V		
風量	52m³/min		
出力	400W		
羽根径	ϕ 290mm		
重量	12.5kg		

各ケースの実験状況と発煙後の煙の流れを以下に示す。 写真-7の発煙のみのケースでは、初めの 10 秒程度は 煙がゆっくりと上昇し、その後徐々に横に拡がる性状で あった。写真-8の送風機と風管を用いた集塵方式では、 煙を吸い寄せる効果はほとんど無かったため、最終的に 風管吸込み口と発煙源の距離を 500mm として計測した。 写真-9のプッシュプル集塵の場合では、煙の誘導が確 認できる。図-7に集塵性能の比較結果を示す。濃度は スモークマシン周囲に配置した粉塵計4台の合計値であ る。発煙のみと送風機と風管による集塵では、発煙開始 と同時に直性的に濃度上昇したが、プッシュプル集塵で は濃度上昇を抑制していることが分かる。発煙開始6分 経過後の濃度を比較すると、送風機と風管による集塵方 式に比べて1/4以下であことを確認した。

写真-7 発煙のみ(集塵なし)

写真-8 送風機と風管による集塵

写真-9 プッシュプル集塵

3.3 ミスト沈塵

a. 技術概要

ミスト沈塵は粉塵にミストを付着させ沈降させる技術 である。一般の散水方式では廃水処理が必要となるため、 建設現場での使用は解体工事などの屋外作業に限られて いた。最近では夏季の蒸発潜熱を利用したヒートアイラ ンド対策や暑気対策として、粒径が 10~30µm 程度の ミストを用いる場面が見られるなど、ミスト技術は向上 している。そこで、屋内でも有効と思われるノズルを選 定し、システムを構築した。以下に、ミスト沈塵システ ムの特徴を示す。

- i. ノズル粒径、流量、噴霧角、噴霧パターンにより 粉塵の拡散を防ぐ
- ii. コンプレッサと加圧タンク、灌水チューブの構成 で、水道のない場面や広いエリアに対応可能

b. 拡散防止性能

屋内での適用性を判断するため、室内試験を実施した。 天井高さ 2,300mm に配管した灌水チューブに表-8に 示すノズルを 500mm ピッチに取り付けた。写真-10 に 実験状況を示す。粉塵源を中央に据えて周辺からミスト で覆う配置とした。なお、粉塵計ではミストも粉塵濃度 としてカウントしてしまうため、目視で状況を確認した。

実験の結果、ミスト粒子径 25µm では現場の気流状 況に大きく左右されること、260µm では流量が多くな るため室内での排水を積極的に行う必要があることが分 かった。従って、ミストの粒子径 50~150µm が拡散防 止には適切であることを確認した。

No	粒子径 (μm)	流量 (I/hour)	圧力 (MPa)	噴角 (°)	噴霧 パタン	所見
1	25	2.2	5	80	円錐	軽量過ぎて沈塵不可
2	50	4.1 10.6	1 5	80	円錐	沈塵に適当
3	150	12	0.3	80	円錐	沈塵に適当
4	260	60	0.2	75	円錐	水量過多
5	140	18 10	0.3	115 101	扇形	噴霧パタンが区画に適当

表-8 ミストノズルの仕様

写真-10 ミスト沈塵

4. まとめ

工事粉塵対策技術としてエアパネルによる簡易区画工 法、およびプッシュプル方式の局所集塵システム、ミス ト沈塵システムを開発した。工事中に建物内で発生する 粉塵の拡散を抑制する性能を把握したことで、様々な工 事環境に対応できるようになった。各技術の概要と特徴 を以下にまとめる。

i. エアパネル区画工法

軽量エアパネルを用いることで、粉塵発生エリア を迅速に簡便な区画が可能になり、騒音低減にも効 果がある

ii. プッシュプル集塵システム

従来から使用してきた集塵方式の送風機と風管に 送風フードと受風フードを接続してプッシュプル集 塵することで、集塵性能を4倍まで高めることがで きた

iii. ミスト沈塵システム

屋内作業の沈塵に有効なミスト粒子径が 50~150 μm であることを確認した。長時間使用する場合、 廃水処理が必要となるが、ミストによる拡散防止性 能を確認した

5. あとがき

粉塵は社会的な問題であることから、本研究開発で考 案した技術を建設工事で問題となっている粉塵の対策技 術として普及させたい。今後は現場適用での実証データ を得て、適宜改良を行い、利用価値を高めたい。

【参考文献】

- 日本建築学会「建築設計資料集成1環境」、丸善、 pp.140-148、1989.11
- 厚生労働省「第7次粉じん障害防止総合対策について」、pp.3-4、2008.3
- 3)国土交通省「公共建築改修工事標準仕様書(建築工 事編)」、官庁営繕、p.13、2008.4
- 4) 日本建築学会「建築設計資料集成総合編」、丸善、 p.98、2001.6
- 5) 日本建築学会「コンパクト建築設計資料集成第2版」、 丸善、p. 254、1994.8
- (6) 井伊谷鋼一「集塵技術マニュアル」、日刊工業新聞社、 pp. 29-102、1975.11
- 7) 大気汚染研究全国協議会「大気汚染ハンドブック(2) 除じん装置編」、コロナ社、pp.71-230、1976.4
- #伊谷鋼一「集塵装置の性能」、産業技術センター、 pp. 51-58、1976.10

Fc100N/mm²高強度コンクリートの 超高層集合住宅への適用

Application of Fc100N/mm² High-strength Concrete to High-rise Reinforced

Concrete Building

河野政典* 起橋孝徳* 吉本竜也** 飯塚宏行***

要 旨

設計基準強度 100N/mm²の高強度コンクリートを超高層鉄筋コンクリート造の集合住宅へ適用した。コン クリートの品質管理として、受入れ時のフレッシュコンクリート試験、単位水量測定、および圧縮強度試験 を実施した。コンクリートの打設ではポンプ圧送を試み、圧送前後のフレッシュ性状の変化を確認した。ま た、構造体コンクリートの長期性状として圧縮強度発現の推移、および実柱部材の長さ変化を把握するため、 模擬柱部材によるコア圧縮強度試験、実柱部材のひずみ測定を行った。実施工の結果、受入れ試験結果から、 安定したフレッシュ性状のコンクリートが製造されていたことが確認され、コンクリート打設ではポンプ圧 送が十分可能であることがわかった。打設後の柱コンクリート打ち上がり面の充填状況は良好で、圧縮強度 は所要の強度を十分上回っており、高品質な構造躯体を施工することができた。

キーワード: 100N/mm²高強度コンクリート、品質管理、ポンプ圧送、長期強度、ひずみ

1. まえがき

近年、都心部の集合住宅では、土地の高度利用から、 超高層化が進みつつあり、また、平面設計の自由度、快 適空間の確保から大スパン化が望まれている。超高層化、 大スパン化により、柱には高軸力が作用することとなる が、柱部材は居住性確保から断面の大きさが制限される。 コンクリートの高強度化は、建物の超高層化、大スパン 化を実現する有効な手段であり、昨今、都市部では、超 高層鉄筋コンクリート造集合住宅に 100N/mm²級コンク リートが適用される事例が増えつつある¹⁾。

当社においても設計基準強度(以下、「Fc」と称す) 100N/mm²の高強度コンクリートを地上 41 階建ての超 高層鉄筋コンクリート造集合住宅の柱部材に適用した。 本報では、適用した高強度コンクリートの調合、フレッ シュ性状、圧縮強度、施工状況、および柱部材のひずみ 測定結果について報告する。

2. 施工概要

2.1 強度コンクリートの適用部位

鉄筋コンクリート架構のコンクリート強度、および 部材の施工方法を図ー1に示す。1階および2階の柱部 材(計 74 本)に Fc100N/mm²の高強度コンクリートを適 用し、全て現場打ちコンクリートで柱部材を施工した。 Fc100N/mm²の高強度コンクリートの総打設量は 540m³ で、打設時期は11 月から12 月である。

*技術研究所 **東日本支社建築第1部 ***東日本支社建築工務部

Fc90N/mm²の柱部材にはフルプレキャストコンク リートを用い、Fc80N/mm²以下の柱部材にはフルプレ キャストと外殻プレキャストコンクリートを部位ごとに 使い分けた。なお、柱梁接合部には全て現場打ちコンク リートを用いた。

2.2 ンクリートの使用材料と調合

Fc100N/mm² コンクリートの使用材料を表-1、調合 および調合強度の算定方法を表-2に示す。セメントに は、シリカフュームプレミックス低熱ポルトランドセメ ントと中庸熱ポルトランドセメントを、質量比4:6の 割合で混合使用した。また、添加材としてポリエステル 繊維(密度 1.39g/cm³)を 0.1vol%添加した。スランプフ ローの管理値は、繊維添加後荷卸しの段階で 65±10cm、 空気量は 2.0±1.5%とした。

圧縮強度の管理材齢は 28 日とし、強度補正値($_{28}S_{91}$) は実機実験の結果から冬期で 7 N/mm² とした。調合管 理強度(Fc + $_{28}S_{91}$)は 107N/mm² で、水セメント比は 19.7%である。

2.3 ンクリートの製造と打設方法

コンクリートの製造を、都内のレディミクストコンク リート工場で行った。3.0m³練り強制二軸ミキサーで、 1バッチ 2.25m³を製造し、アジテータ車2バッチ練合 わせで出荷した。繊維は、1バッチ目のコンクリートを アジテータ車に積込み、その後、所定量の繊維をアジ テータ車に投入して2バッチ目のコンクリートを積重ね、 2分間アジテータ車のミキサーを高速回転させ練り混ぜ た。この方法で、ミキサー内のコンクリート中に繊維が 一様に分散することを事前の実機実験で確認している。 低水セメント比であるためコンクリートの製造に時間を 要したが、工場から時間あたりアジテータ車4~5台の 出荷が可能であった。

コンクリートの打設は、コンクリートバケット、およ びポンプ圧送で行った。

3. 測定項目

3.1 質管理項目

コンクリートの品質管理項目を表-3に示す。受入れ 試験では、単位水量の測定を実施した。単位水量の測定 は、従来のエアメータ法を改良した当社開発のエアメー タ骨材洗出し法²⁾で行った。

3.2 長期測定項目

100N/mm² 級コンクリートの長期性状に関する測定項 目を表-4に示す。長期性状として構造体コンクリート の圧縮強度、および1階柱部材の軸方向のひずみを測定 した。

構造体コンクリートの圧縮強度は、1階柱部材と同一 断面寸法(1.1×1.1m)で高さ 1.0m の模擬柱部材を製造し て、模擬柱からコア供試体を採取し確認した。

表一1 使用材料

種別 記号		銘柄・産地等	物性值
セメント	SFC	シリカフュームプ レミックス 低熱ポ ルトラント セメント	密度:3.08, 水中密度:3.09, 比表面積:6350cm²/g シリカフューム内割り10%
	MC	中庸熱 ポルトランドセメント	密度: 3. 21, 水中密度: 3. 29, 比表面積: 3760cm ² /g
細骨材	S	富津産山砂	密度:2.60,吸水率:1.27%, F.M.2.46
粗骨材	G	桜川産硬質 砂岩砕石	密度:2.65,吸水率:0.62%, 実積率:61.5%
化学 混和剤	Add	高性能減水剤	ポリカルボン酸系 密度:1.07

表-2 Fc100N/mm²コンクリートの調合

調合管理	W/C		単位	呈 量 (kg	g/m³)		亦左旦
強度	W/C	W	(5	c	C	全风里 (1/)
(N/mm^2)	(%)	W	SFC	MC	2	G	(/0)
107	19.7	165	335	503	621	824	2.0

・調合強度

 ${\rm Fm}{=}{\rm Fc}{+_{_{28}}}{\rm S}_{_{91}}{+}2\ \sigma\ {=}{127}{\rm N/mm^2}$

Fm:調合強度 (N/mm²)

Fc:設計基準強度 Fc=100N/mm²

nSm: 強度補正值 28S91=7N/mm²(冬期)

 σ :標準偏差 σ =10N/mm²

表-3 品質管理項目

	項目	方法
フレッシュ	スランプフロー	JIS A 1150
	空気量	JIS A 1128
コンクリート (巫スわ	コンクリート温度	JIS A 1156
(夏八4) 試驗)	塩化物イオン量	JASS 5T-502
H. (40)(7)	単位水量	改良エアメータ法 2)
硬化 コンクリート		JIS A 1108
	圧縮強度	標準水中養生
		材齢4週

表-4 長期性状に関する測定項目

種別		項目	方法				
	構造	本圧縮強度	JIS A 1107(圧縮強度)				
	201	いだちゃん	模擬柱のコア供試体				
	ア、	ンク係数	材齢 4, 13, 26, 52 週				
+>-~	柱	1 階柱部材	柱部材にひずみ計を設置				
杜勒材	ひずみ	無載荷柱	模擬柱にひずみ計を設置				
	1β	皆柱軸力	応力計を設置				
	コンク	リート温度	教命生				
	環	境温度	然黾对				

1柱部材のひずみを、ひずみ計により測定した。また、柱部材に軸力が生じていない状態、すなわち、無載荷状態の柱部材のひずみを把握するため、1階柱部材と同一断面寸法、同一鉄筋量(主筋 28-D41、芯筋 8-D41、フープ筋 田 -K16@80)の模擬柱部材を製造して、ひずみ計を設置し、自由収縮ひずみを測定した。

4. 施工結果

4.1 レッシュコンクリートの品質

Fc100N/mm² コンクリートの打込み工区ごとの打設量 を表-5に示す。コンクリートは部位ごと、工区ごとに 計6回打設した。

フレッシュコンクリートの受入れ試験結果として、 スランプフローと空気量の結果を図-2、図-3に、フ レッシュコンクリートの性状を写真-1に示す。受入れ 試験の結果、スランプフロー、空気量共に管理範囲内で

表-5 Fc100N/mm²コンクリートの工区ごとの打設量

		2階柱								
部位	梁	۲	パ ネルゾ ーン			梁下		ハ ネルゾ ーン		
IZ	А	В	1	1 2 3		А	В	1	2	3
打設日	11/17	11/21	11/29	12/1	12/3	12/11	12/13	12/18	12/20	12/21
打設量 m ³	83	79	40	43	50	74	73	28	30	40
総量	295							245		

あり、スランプフローの多くは 65cm±5cm、空気量は 1.5±0.5%の範囲内で、安定した品質のコンクリートが 出荷されていることを確認した。工場から現場までの運 搬時間は約 40 分であったが、事前の実機実験において フレッシュ性状は、練り上がり 120 分までは管理範囲内 であることを確認している。

単位水量の測定結果の一例として、1階柱1回目(A 工区)と2回目(B工区)の打設時の結果を図-4に示す。 単位水量の管理基準は、調合計画水量に対し±15kg/m³ とした。測定の結果、単位水量誤差は-7.6~+0.8kg/m³ で、全て管理基準値内であった。1回目(A工区)の標準 偏差は 1.0kg/m³、2回目(B工区)は 2.2kg/m³ であり、ス ランプフローおよび空気量同様、安定した品質のコンク リートが出荷されていた。

写真-1 フレッシュコンクリートの性状 (受入れ試験状況)

図-4 単位水量の受入れ試験結果

図-5 標準水中養生材齢28日の圧縮強度の試験結果

写真-2 コンクリートバケットによる打設状況

4.2 縮強度

標準水中養生材齢 28 日の圧縮強度試験結果を図-5 に示す。全ての試験結果は、判定基準 107N/mm²を満足 した。標準偏差は 4.1N/mm² で、変動係数は 3.1%であ り、ばらつきは小さく、フレッシュ性状と同様に安定し た圧縮強度が確認された。また、圧縮強度の平均値は 130.4N/mm² で、調合強度の 127N/mm² よりやや大き かった。

4.3 設状況

Fc100N/mm² コンクリートの打設状況として、コンク リートバケットによる打設状況を**写真-2**に、ポンプ車 による打設状況を**写真-3**に示す。

コンクリートバケットには容量 2.0m³ のものを用い、 コンクリート落とし込み時の材料分離を防止するため、 バケットの打込み口先端にはサニーホースを取り付けた。 Fc100N/mm² のコンクリートは低水セメント比で、かつ、 有機繊維を添加しているため粘性が大きく、アジテータ 車からバケットへの積込み、バケットから柱部材への落 とし込み打設に非常に時間を要した。特に、サニーホー ス中のコンクリートの通過に時間を要し、柱1本(約 4.6m³)あたり約 30 分の打設時間を要した。したがって、 コンクリートバケットによる打設においては、サニー ホースに代わる落とし込み方法の検討が今後の課題であ る。

一方、ポンプ圧送には最大吐出圧 13.0MPa のコンク リートポンプを用い、ポンプ車のブーム配管により打設 した。コンクリートの粘性は大きかったものの、十分ポ ンプ圧送が可能で、時間あたり約 30m³の打設が可能で あることが確認された。ポンプ圧送によるフレッシュ性 状の影響を確認するため、筒先から試料を採取し、スラ ンプフローと空気量を測定した。その結果を表-6に示 す。ポンプ圧送によりスランプフローは約5 cm 小さく なり、空気量はやや大きくなった。

4.4 の出来型

型枠の脱型は、コンクリートのひび割れ発生を防止す

写真-3 ポンプ車による打設状況

表-6 ポンプ圧送後のフレッシュ性状

		圧送前	圧送後
1回目	スランフ [°] フロー cm	60.8	53.5
	空気量 %	1.5	1.8
2回目	スランフ°フロー cm	61.2	57.8
	空気量 %	1.5	1.7

写真-4 脱型後の柱出来型

るため、コンクリート温度が外気温とほぼ同じとなる材 齢 10 日以降に行った。模擬柱部材で計測した柱中心部 と端部のコンクリート温度を図-6に示す。柱中心部の コンクリートの最高温度は約 80℃で、柱端部のコンク リート温度との最大差は約 25℃でった。

脱型後の打ち上がり面には、ひび割れや大きな気泡 はみられず、良好な充填が確認できた。脱型後の柱部材 の出来型を**写真-4**に示す。

5. 構造体コンクリートの長期強度と柱ひずみ

5.1 造体強度

模擬柱部材から採取したコアの圧縮強度とヤング係 数の測定結果を図-7に示す。材齢 91 日の圧縮強度は 121N/mm²であり、設計基準強度を十分上回っていた。 材齢 26 週の圧縮強度は、123N/mm²で強度増進は小さ いが、1年後の材齢 52 週の圧縮強度は 137N/mm²で、 材齢4週から26週の強度増進に比べ、材齢26週以降の 強度増進の方が大きくなった。これは、コンクリートの 打設が11月17日で、打設日以降は冬期となり、外気温 が低いため圧縮強度の増進が鈍かった。また、材齢26 週以降で夏期となり外気温の温度上昇に伴い、水和反応 が促進され強度が増進したと考えられる。一方、ヤング 係数は、材齢26週までほとんど変わらず約42kN/mm² であった。1年後の材齢52週では、圧縮強度の増進に 伴い微増し、44.4kN/mm²となった。

5.2 ひずみ

無載荷状態の模擬柱部材の自由ひずみの変化を図-8 に示す。ひずみは、既往文献からコンクリートの線膨張 係数を 9.8×10⁶/C³⁾とし、温度変化によるひずみ変化 分を補正した。得られたひずみは、自己収縮と乾燥収縮 ひずみによるものと考えられる。コンクリートの水セメ ント比は 20%以下で、かつ、部材断面が大きいため、 測定されたひずみのほとんどが自己収縮ひずみと考えら れる。材齢5日のひずみは約 300×10⁶で、それ以降は ひずみの変化はほとんどみられなかった。

1 階柱部材に作用する圧縮応力とひずみの変化を図-9 に示す。ひずみは図-8 同様、コンクリートの線膨張 係数を 9.8×10⁶/℃³とし、温度補正を行った。躯体コ ンクリートの打設は1階コンクリート打設から約400日 後に完了した。躯体の構築に伴い、柱ひずみも増加して いることがわかる。材齢400日において1階柱部材に生 じた圧縮応力は約19N/mm²で、コンクリートの圧縮強 度137N/mm²に対して、軸力比0.14であった。

測定されたひずみは、乾燥収縮、自己収縮、圧縮応力 による弾性ひずみ、およびクリープひずみによるものと 考えられる。ここで、クリープひずみを除いたひずみ量 について検討する。柱部材に加わる圧縮応力は、測定対 象柱上部におけるパネルゾーンのコンクリート打設以降

図-7 構造体コンクリートの圧縮強度とヤング係数

に生じるものとした。パネルゾーンの打設は柱打設後の 材齢12日である。したがって、材齢12日までに生じる ひずみは、乾燥収縮と自己収縮ひずみによるものと仮定 した。また、乾燥収縮と自己収縮ひずみは、無載荷状態 の模擬柱部材のひずみの測定結果において、材齢5日以 降はひずみの変化がほとんどみられなかったことから、 材齢12日以降、それらのひずみ増加は生じないことと

仮定した。そこで、本検討では、クリープひずみを除い たひずみ量の計算値は、材齢 12 日までの測定ひずみに、 圧縮応力による弾性ひずみを加えたものとした。弾性ひ ずみの算出に用いる柱部材のヤング係数は、コンクリー トのヤング係数についてはコア強度の測定結果から得ら れた平均値の 43.0kN/mm²、鉄筋のヤング係数について は 210kN/mm² とし、部材断面の形状から 51.0N/mm² と した。クリープひずみを除いたひずみ量の計算値を図-9に示す。計算値は、測定値とおおよそ同じ結果となっ た。本来、測定値にはクリープひずみが含まれるため、 計算値より大きくなると考えられるが、本検討結果から はクリープひずみと考えられる測定値と計算値の明確な 差は、材齢 500 日まではみられなかった。

6. まとめ

設計基準強度 100N/mm²の高強度コンクリートを地上 41 階建ての超高層鉄筋コンクリート造集合住宅の柱部 材に 540m³適用し、以下の施工結果が得られた。

- i. 受入れ試験として実施したスランプフロー、空気 量の測定結果は、共に管理範囲内であり、変動幅は 小さく、また、単位水量の測定結果は、計画水量と の差が-7.6~+0.8kg/m³で標準偏差も小さく、安 定した品質のコンクリートが出荷されていた
- ii. コンクリートの圧縮強度は判定基準 107N/mm²を 満足し、標準偏差は 4.1N/mm² で、変動係数は 3.1%であり、ばらつきは小さかった
- iii. フレッシュコンクリートの粘性は大きかったものの、ポンプ圧送が可能で、時間あたり約 30m³の打設が可能である
- iv. 構造体コンクリートの強度は1年間にわたり強度 が増進し、1年後の圧縮強度は137N/mm²であった
- v. 1階柱部材のひずみ計測の結果、躯体の構築に伴 い柱ひずみも増加するが、材齢 500 日までは、明確 なクリープひずみは確認されなかった

7. あとがき

今回、当社で初めて設計基準強度 100N/mm²の高強度 コンクリートを実建物に適用して、高品質な構造躯体を 施工することができた。今後は、ここで得られた実績、 経験を水平展開し、次の 100N/mm² 級高強度コンクリー トの現場適用に繋げたい。また、当社では設計基準強度 130N/mm² までの高強度コンクリートの大臣認定を取得 済みであるが、今後研究開発を進め、さらなる高強度コ ンクリートの実用化を実現したい。

【参考文献】

- 例えば 黒岩秀介、河合邦彦、小田切智明、嵐山正 樹、「Fc130N/mm²の高強度コンクリートを用いた超 高層集合住宅の施工」、コンクリート工学、Vol.42、 No10、pp.44-49、2004
- 2) 起橋孝徳、上西 隆、河野政典、小竹琢雄、「コンク リートの単位水量管理方法に関する研究-エアメー タを使用した高精度推定方法の開発-」、奥村組技術 研究年報、Vol.35、2009
- 3) 梶田秀幸ほか、「超高強度コンクリートの自己収縮に 関する実験的研究 その3 線膨張係数」、日本建築 学会大会学術講演梗概集、A-1、pp.259-260、2007

コンクリートの単位水量管理方法に関する研究 -エアメータを使用した高精度推定方法の開発-

Research on Controlling Method of Water Content per Unit Volume of Concrete

- Development of Highly Accurate Estimation Method using Air Meter -

起橋孝徳* 上西 隆** 河野政典* 小竹琢雄***

要旨

コンクリートの品質確保のために要求される単位水量の管理に当たり、これまでは高周波加熱乾燥法を用 いた当社独自の方法を開発して精度の高い管理を行ってきた。しかし、高周波加熱乾燥法は測定に時間が掛 かるなどの問題があった。そこで、試験方法が容易で所要時間も短いエアメータ法について、従来の方法で は問題になっていた推定精度を改善するため、測定手順の追加と新たな推定式による単位水量推定方法を提 案した。推定式は、試験時のサンプリング誤差を補正でき、製造時の計量誤差によって計画調合とは異なっ たコンクリートでも単位水量を推定できることを特徴としている。また、この方法によって従来のエアメー タ法よりも高い精度で単位水量を推定できることを、室内実験や現場実験を行って確認した。

キーワード:コンクリート、品質管理、単位水量、エアメータ法、粗骨材量

1. まえがき

近年、コンクリートの品質に対する関心が高まり、要 求性能を確保するための管理が求められている。なかで も、コンクリート製造時の単位水量の変動については強 度や耐久性などの品質に大きな影響を及ぼすため、特に 管理が重視されている。なお、国土交通省大臣官房官庁 営繕部からは、「レディーミクストコンクリートの品質 確保について」、「同運用について」の通知が出され、延 ベ床面積 1500m² 程度以上の新築工事においては、単位 水量の測定を行うことが定められている。

フレッシュコンクリート中の単位水量の測定には複数 の方法があり、現在は高周波加熱乾燥法、エアメータ法 ¹²³³、静電容量法、RI 法などが用いられている。これら の方法は、いずれもフレッシュコンクリート中の単位水 量を直接測定するものではないため、得られた単位水量 の値には、算出方法が基づく仮定条件に由来する誤差が 含まれている。電子レンジを用いた「高周波加熱乾燥 法」については、既に当社独自の推定式を構築し、精度 の高い推定結果に基づいた管理を行ってきた⁴⁾。しかし、 高周波加熱乾燥法は、測定に時間が掛かり、頻繁に測定 しなければならない場合には、受入れ試験の実施によっ てコンクリートの施工に時間的な制約が生じる問題が あった。これに対して、エアメータ法は測定方法が簡便 であり、短時間で単位水量を推定できるので、測定頻度 の高い場合にも対応できる利点を持つが、高周波加熱乾 燥法よりも精度が低いことが問題であった。そこで、エ アメータを用いて従来よりも高精度に単位水量を推定で きる方法を開発した。また、室内試験や現場実験を行っ て、この推定方法の適用性と推定精度を検証した。

2. 単位水量推定方法

2.1 測定方法

測定は基本的に従来のエアメータ法に準拠するが、 試験を行う際に採取する試料はサンプリング誤差によっ て製品の調合とは異なっている。この誤差を補正するた めに、測定に用いた試料から粗骨材を洗い出して計量し、 この値から試料中に含まれる単位粗骨材量を算出して補 正する手順を従来の測定方法に加えた。測定手順を、**写 真**-1に示す。(以下、提案する測定方法を「エアメー タ洗出法」と称する)

- a. 使用器具
 - ・圧力式エアメータ
 - ・秤(最大秤量 25kg 以上、最小目盛 1g 以下)
 - ・籠形ふるい(公称目開き 4.75mm、線径 1.6mm)
 - ・洗い容器
 - ・タオルウェス
- b. 測定手順
 - i. 空気量測定法に従ってコンクリートの空気量を 0.1%単位で測定する
 - ii. 試料の質量を測定する

*技術研究所 **建設本部建築部 ***東日本支社建築工務部

- iii. エアメータ内のコンクリート試料をふるい上で水 洗いし、取り出した粗骨材の質量を表面水を除いて 測定する
- iv. 骨材試験成績表に基づいて、粒径 5mm 未満の粗 骨材量の補正を行う
- v. 推定式により単位水量を計算する

2.2 提案式

従来のエアメータ法では、試料の調合は細骨材の表 面水率以外は調合計画通りである前提で水量推定を行っ ている。しかし、実際の調合は計量誤差により計画調合 と異なる調合となっている。そこで、この誤差を補正す るために、計画調合と製品、および試料中の各材料の単 位量の関係について以下の仮定を行い、その関係を元に 測定結果から単位水量を推定する式をあらたに構築した。

(以下、構築した推定式を「提案式」と称する) 提案式 による単位水量推定の仮定条件を、図-1に示す。

a. 仮定条件

単位水量の推定式を構築するに当たって、以下の条 件を仮定した。

i. 製品のセメントと粗骨材の材料割合(質量比)は、 計量値の比と等しい

(これは、コンクリート製造の計量過程でセメント の計量値の信頼性が最も高いことと、粗骨材は細骨 材に比べて表面水率の変動幅が小さく、管理も容易 であることによる。)

- ii. 製品の空気量は、測定値と等しい
- iii. 製品の単位セメント量は、計量値に対して、調合 計画時の空気量と製品の空気量の差によって生じる 全容積の製造誤差を補正した値に等しい
- iv. 製品コンクリート中のモルタルの材料割合(水: セメント:細骨材 の容積比)は、測定に用いるた めにサンプリングした試料と等しい

- v. 製品コンクリート中の、水、セメント、細骨材の 各単位量は、測定に用いた試料中の単位量に対して、 サンプリングによって生じた粗骨材量の誤差を補正 した値に等しい
- b. 推定式の構築

単位水量の推定式を以下に構築した。提案式は従来の 推定式と異なり、単位水量の推定に調合計画上の単位水 量や細骨材量を用いない。このため、製造時の計量誤差 によって計画調合とは異なったコンクリートでも、セメ ントと粗骨材の計量値に基づいて、単位水量を精度良く 推定できる。

試料詰め

空気量·総質量測定

粗骨材洗い出し 写真-1 エアメータ洗出法の測定状況

粗骨材質量測定

図-1 提案式による単位水量推定の仮定条件

仮定iより、製品の単位粗骨材量は、計量単位粗骨材 量に対して製品単位セメント量と計量単位セメント量の 比を乗じたものとして、式(1)に表す。

$$G_A = G_0 \times \frac{C_A}{C_0} \tag{1}$$

仮定ii、iiiより、製品の単位セメント量は計量単位セ メント量に対して、計画空気量と測定空気量の差を補正 したものとして、式(2)に表す。

$$C_A = C_0 \times \frac{1 - Air_m}{1 - Air_0} \tag{2}$$

仮定iv、vより、試料中の単位セメント量は製品の単 位セメント量に対して、試料中の単位粗骨材量のサンプ リング誤差を補正したものとして、式(3)に表す。

$$C_m = C_A \times \frac{M_m}{1 - \frac{G_A}{1000 \times \rho_g}}$$
(3)

ただし、
$$M_m = 1 - \frac{G_m}{1000 \times \rho_g}$$
 (4)

$$G_m = \frac{m_g}{V} \tag{5}$$

式(3)に式(1)、(2)を代入して、式(6)を得る。

$$C_m = C_0 \times \frac{M_m}{\frac{1 - Air_0}{1 - Air_m} - \frac{G_0}{1000 \times \rho_g}}$$
(6)

試料の内、モルタル中の各材料の単位量と体積の関係より、式(7)を得る。

$$\frac{W_m + \frac{C_m}{\rho_{c'}} + \frac{S_m}{\rho_s}}{1000} + Air_m = M_m$$
(7)

試料中の各材料の単位量と試料密度の関係より、式 (8)を得る。

$$S_m = \frac{m}{V} - G_m - W_m - C_m \tag{8}$$

式(7)に式(8)を代入して、式(9)を得る。

$$W_m = \frac{1000 \times \left(M_m - Air_m\right) \times \rho_s + C_m \times \left(1 - \frac{\rho_s}{\rho_{c'}}\right) - \frac{m}{V} + G_m}{\rho_s - 1}$$
(9)

仮定vより、製品の単位水量は、試料中の単位水量に 粗骨材のサンプリング誤差を補正したものとして、式 (10)に表す。

$$W_A = W_m \times \frac{1 - \frac{G_A}{1000 \times \rho_g}}{M_m} \tag{10}$$

式(10)に式(1)、(2)を代入して、式(11)を得る。

$$W_{A} = W_{m} \times \frac{1 - \frac{G_{0}}{1000 \times \rho_{g}} \times \frac{1 - Air_{m}}{1 - Air_{0}}}{M_{m}}$$
(11)

ここに、

以上、製品の単位水量 W_4 は、式(6)、(9)、(11)に測定 値を代入することによって得られる。なお、セメントや 細骨材、粗骨材の単位量についても、上記の式から推定 することが可能である。

3. 単位水量推定精度確認実験

3.1 室内実験

試験室内で、練り混ぜ水量を正確に管理して製造さ れたコンクリートを用いて、従来のエアメータ法とエア メータ洗出法、および高周波加熱乾燥法⁴⁾(以下、「レ ンジ法」と称する)について精度の比較試験を行った。 a.実験方法

検討に使用した調合を表-1に、使用材料を表-2

に示す。試験対象とするコンクリートの強度は 60~ 130N/mm²の範囲とし、強度領域に応じて 2 種類のセメ ントを使用した。また、一部の調合では意図的に加水を 行って、コンクリートの単位水量が計画調合よりも多く なった場合について検討した。コンクリートの練り混ぜ には水平二軸強制練りミキサー(容量 0.055m³)を使用 し、各調合ごとに 0.025m³製造した。

エアメータ法の試験は、2.1 に記した測定方法に従っ て行い、ここで得られた同一の値を従来式、および提案 式に代入して単位水量をそれぞれ算出した。なお、提案 式におけるセメントの密度は、セメントの吸水による影 響を考慮し、JIS R 5201の密度試験を参考に、鉱油の代 わりに水を用いた試験によって得られた値を用いた。

レンジ法の試験は、市販の電動ふるい装置を用いて フレッシュコンクリートを1分間ウエットスクリーニン グして得られたモルタル約 400g を試料として用い、ス テンレス製の丸皿を容器として電子レンジ(200V、 1600W)で8分間の加熱乾燥を行って、加熱前後の質量 から単位水量を算出した。

b. 実験結果

エアメータ洗出法では、従来のエアメータ法に比べ て試料中の粗骨材の洗い出しと計量の作業が増えるが、 これらに掛かる時間は籠形ふるいの使用などによって短 縮でき、ウエットスクリーニングや加熱乾燥を要するレ ンジ法に比べて短時間で試験を終了できた。

エアメータ中のコンクリート試料に含まれる粗骨材

カハル	呼び	W/C		亦左旦				
種類	強度	(%)	W	(2	S	G	空风重 (%)
	(N/mm^2)			SFC	MC			
	60	34.7	170	-	490	861	864	2.0
	00	37.7	182	-	484	850	853	2.0
MC	70	30.2	170	-	563	803	864	2.0
	80	26.7	170	-	637	760	848	2.0
		29.0	182	-	629	751	837	2.0
SEC	90	23.0	170	148	592	671	848	2.0
<u>эгс</u>	100	20.8	165	318	476	634	848	2.0
MC		19.5	155	476	318	634	873	2.0
WIC	110	18.0	165	550	367	526	848	2.0
SFC	80	28.8	168	582	-	793	850	2.0
	100	19.5	155	794	I	630	861	2.0
	110	18.4	168	911	-	526	838	2.0
	130	16.6	168	1007	-	446	837	2.0

表-1 室内実験調合

表-2 使用材料

種別	記号	銘柄・産地等	物性値
カルル	SEC	シリカフュームフ゜ レミックス	密度:3.08,水中密度:3.09,
	SFC	低熱ポルトランドセメント	比表面積:6350cm²/g
L).√ .	MC	中庸熱	密度:3.21,水中密度:3.29,
		ポ ルトラント セメント	比表面積:3760cm²/g
細骨材	ç	宣津産山砂	密度:2.60,吸水率:1.27%,
小山 月 1/1	c	田伴庭山切	F.M.2.46
粗骨材	G	桜川産硬質	密度:2.65,吸水率:0.62%,
		砂岩砕石	実積率:61.5%

のサンプリングによる誤差を、図-2に示す。試料中の 粗骨材量は、計画値の96~118%にあり、特に意図的に 加水を行った調合で多くなった。これは、試料を採取す る際に、加水によって分離傾向にあるコンクリートでは 採取した試料が不均質になり易くなるためと考えられる。

単位水量の推定結果と単位水量との関係を、図-3 に示す。従来式による推定結果では、計画単位水量と推 定単位水量の相関係数は 0.56 と小さく、単位水量の計 画値の変化に対する推定値の追従性が低いと考えられる。 また、標準偏差も 5.2kg/m³ であり、誤差の大きい結果 であった。一方、レンジ法における相関係数は 0.79 で、 計画単位水量の変化に対して推定単位水量の値は良好に 対応し、標準偏差も 4.0kg/m³と従来式によるエアメー タ法よりも小さな値を示した。これに対して、提案式は 試料中の粗骨材量以外の測定値は従来式と同じ値を用い ているが、相関係数は 0.90 と高く、計画単位水量の変 化にはレンジ法と同等以上の良好な対応を示していた。 また、標準偏差も 3.1kg/m³ と今回試験した中では最も 小さな値を示した。このことから、エアメータ洗出法を 用いることによって、従来よりも高い精度の試験結果を 得られることが確認できた。

3.2 現場実験

エアメータ洗出法によるコンクリート品質管理の適 用性を確認するため、実際の工事に出荷されたコンク リートを用いて単位水量試験を行った。

a. 実験方法

検討に使用した調合を**表-3**に示す。試験に当たっ ては、任意の生コン車からコンクリートを採取して各種 単位水量試験を行った。なお、一部の調合に対しては、 採取したままのコンクリートと、採取したコンクリート

呼び	W/C		単位量(kg/i				空気	
強度 (N/mm ²)	(%)	W	(С		C	量	
			SFC	MC	5	U	(%)	
100	19.7	165	335	503	605	824	2.0	
100	+12.6kg/m ³ 加水							
	26.7	170	-	637	773	853	2.0	
80	+8.3kg/m ³ 加水							
		+16.6kg/m ³ 加水						
48	39.4	170	-	431	865	904	3.0	
	+8.3kg/m ³ 加水							
	$+16.6 \text{ kg/m}^3 \pm 10.7 \text{ k}$							

表-3 現場実験調合

に 8~17kg/m³ 程度の加水を行って撹拌した試料を用い て、水量の変動に対する推定精度を確認するとともに、 圧縮強度試験用供試体を採取し、圧縮強度と単位水量試 験結果に基づく推定結合材水比を対比した。

b. 実験結果

エアメータ中のコンクリート試料に含まれる粗骨材の サンプリングによる誤差を、図-4に示す。試料中の粗 骨材量は、計画値の 93~123%であったが、加水の有無 に関わらず粗骨材量は変動していた。この値の中には製 造時の計量誤差も含まれているが、実工事における単位 水量試験では室内試験の場合とは異なり、アジテータ車 から一輪車、試験用練り舟など、エアメータに詰めるま でのサンプリングの経路が長いことが、誤差が大きく なった主な要因と考えられる。

単位水量の計画値と推定値の関係を、図-5に示す。 従来式による単位水量の推定値は、計画値よりも平均で 8.3kg/m³小さくなり、誤差範囲は+3.4~-27.7kg/m³に広

がっていた。一方、レンジ法による推定値は、平均では 計画値に対して 1.1kg/m³ 大きいのみであったが、誤差 の範囲は+14.8~-11.9kg/m³ であった。これに対して、提 案式による推定値は、計画値よりも平均で 5.3kg/m³ 小 さくなっているが、誤差範囲は+1.1~-15.9kg/m³ に収 まっており、設定値の変化量に対して良く応答し、ばら つきの小さい結果が得られた。

工場から出荷されたコンクリートは、試料の単位水 量に製造誤差を含む。そこで、この製造誤差による影響 を除いて試験方法の精度を評価するため、加水を行った 場合の各試験結果について、加水前後の単位水量推定値 の差を実際の加水量と比較した。加水量の設定値と推定 値の関係を、図-6に示す。加水量に対する推定精度は、 提案式が最も良好であった。ここで、レンジ法の推定誤 差が比較的大きくなっているが、これは今回測定に用い た試料の絶対量が少ないため、測定誤差が大きく表れた ものと考えられる。

用いたセメント種類が同じ中庸熱ポルトランドセメ ントで、呼び強度が 80N/mm²と 48N/mm²の調合におけ る、単位水量試験の結果から得られた推定結合材水比と 材齢4週圧縮強度との関係を、図-7に示す。また、工 場で保有する結合材水比と材齢4週圧縮強度の関係式を 用いて推定結合材水比から求めた強度と、供試体強度の 差を表-4に示す。推定強度と供試体強度との差は平均 と標準偏差のいずれも、今回比較した試験方法の中では 提案式による結果が最も小さくなった。このことから、 エアメータ洗出法と提案式によってコンクリート強度を 精度良く推定できると考えられる。

4. まとめ

コンクリートの単位水量試験方法であるエアメータ法 について、測定が簡易で所要時間の短い利点を生かしつ つ、推定精度を高めることを目的として、従来の方法に 試料中の粗骨材を計量する手間を加えるとともに、新た に構築した推定式を用いる方法を提案した。また、室内 実験と現場実験によって推定精度を検証し、この方法に よる単位水量の推定結果は、従来のエアメータ法よりも 精度が高く、高周波加熱乾燥法と同程度の精度で推定で きることを確認した。

5. あとがき

今回開発した単位水量推定法は、従来の方法に簡単な 手間を加えることで推定精度を高めることができる手法 である。ここで提案した推定式は、従来の推定式と異な り、試験時のサンプリング誤差を補正でき、製造時の計 量誤差により計画調合とは異なったコンクリートでも、 セメントと粗骨材の計量値に基づいて単位水量を精度良

推定強度と供試体強度の差 平均 範囲 標準偏差 提案式 -1.6 N/mm² 8.7 N/mm² 3.1 N/mm² 2.2 N/mm² 3.4 N/mm² 従来式 9.3 N/mm² レンジ法 -4.3 N/mm² 5.0 N/mm² 8.2 N/mm

く推定できることを特徴としている。今後は、この結果 を展開し、エアメータ洗出法による単位水量管理の普及 に取り組む予定である。

【参考文献】

- 河野広隆、片平 博、「フレッシュコンクリートの単 位水量迅速測定法に関する実験的研究」、土木研究所 資料、第3657号、1999
- 2) 中村博之、十河茂幸、「フレッシュコンクリートの空気量と単位容積質量の測定結果による配合推定方法の適用」、コンクリート工学年次論文集、Vol.23、 No.2、pp.325-330、2001
- 高橋敏樹、近松竜一、十河茂幸、「単位容積質量を用 いた単位水量の迅速評価に関する研究」、コンクリー ト工学年次論文集、Vol.25、No.1、pp.1091-1096、 2003
- 4)河野政典、上西隆、起橋孝徳、「フレッシュコンク リートの単位水量測定方法に関する研究」、奥村組技 術研究年報、Vol.28、pp.31-36、2002