鉄筋コンクリートL形断面コア壁の 構造性能に関する実験的研究

-その2 コンクリート強度と拘束範囲を変動因子とした実験-

Experimental Study on Structural Performance of

R/C Shear Walls with L Shaped Section

- Part 2 Experiment Using Concrete Strength and Confined Area as Variables -

舟木秀尊*細矢 博* 岡 靖弘** 上 寛樹***

要旨

センターコア壁と外周フレームを組み合わせた架構形式に用いるL形のコア壁を対象として、その耐力や 変形性能を適切に評価するために加力実験を行った。これまで実施したものに加えて、新たにコンクリート 強度と軸力比を因子とし、さらにL形コア壁の柱型拘束筋を合理化した2体の試験体について 45°方向の 加力実験を行った。その結果、両試験体は想定通り曲げ破壊し、正負加力時とも限界変形角は R=1/33 であ り、十分な変形性能と柱型の拘束効果を確認することができた。また、曲げ耐力は柱型拘束筋の拘束効果を 適切に評価することで、ファイバーモデルによる断面解析により精度良く評価できることがわかった。

キーワード: L形コア壁、鉄筋コンクリート、変動軸力、構造性能、ファイバーモデル

1. まえがき

近年、都市型集合住宅の需要が高まるにつれて、超高 層鉄筋コンクリート造建物が増加している。その中で、 自由度の高い居住スペースの設計が可能な図-1に示す センターコア壁構造が採用されるケースが増えている。 本研究では、この架構形式に用いるコア壁を対象として、 その耐力や変形性能を適切に評価するための設計資料を 得るために加力実験を行った¹⁾。隅角部および壁端部に 設けた柱型の拘束方法やL形コア壁の加力方向に着目し たこれまでの実験結果をもとに、新たに2体の試験体 (L-5、L-6)で加力実験を行い、構造性能を検討した。

*技術研究所 **東京支社建築設計部 **技術本部建築部

2. 実験計画

2.1 試験体

試験体は、30 階建ての鉄筋コンクリート造建物を想 定し、そのコア壁構造の脚部4層分を約1/6 に縮小した L形コア壁で、壁厚 D=134mm、壁せい L=670mm、加力点 高さ H=2140mm とした。試験体の配筋図を図-2 および 図-3に、諸元を表-1に示す。変動因子はコンクリー ト強度と配筋であり、コンクリート強度は、L-5 では設 計基準強度 80N/mm²、L-1、L-2 および L-6 では 60N/mm² とした。隅角部と端部では柱型のように横拘束筋で拘束 した。隅角部柱型の拘束範囲は全試験体で 2D (D:壁

厚)とし、端部柱型の拘束範囲についてはL-1とL-2で は 2D とし、L-5 と L-6 では 1D とした。また、L-5 と L-6の隅角部柱型の拘束範囲も 2D であるが、そこを 1D ご とに分けて拘束した。また、L-5 と L-6 では柱型内に芯 筋を配し、隅角部柱芯筋には D16(USD685)を、端部柱芯 筋には D16(SD490)を用いた。柱主筋には D10(SD390)を、 隅角部と端部の間の非拘束領域(以降、壁部)に配した 縦筋と横筋には D6 (SD390 相当)を用いた。また、拘束筋 にはL-1とL-2ではD4(SD295相当)を、L-5とL-6では 高強度のD4(USD785相当)を用いた。

2.2 使用材料

試験体に使用したコンクリートと鉄筋の実験日におけ る材料試験結果をそれぞれ表-2と表-3に示す。各値 は3つの試験片の平均値である。コンクリートの弾性係 数Eは1/3割線剛性で求め、降伏点が明確でない鉄筋の 降伏強度 σは 0.2%オフセット法で求めた。各鉄筋の断

面積については、D4 は 12.57mm² とし、その他の鉄筋は 公称断面積を用いた。

2.3 加力方法

加力装置図を図-4に示す。鉛直方向の油圧ジャッ キとアクチュエータにより軸力を与え、水平方向のアク チュエータにより正負交番繰返しせん断力を与えた。加 力履歴は変形角 R(上下スタブ間の水平相対変位δを加 力点高さ H で除した値) で制御し、変形角 R=±1/800 を1回、±1/400、±1/200、±1/100、±1/67、±1/50 を各2回、±1/33を1回繰返した後、正加力方向に片 押しした。軸力は、想定した建物の地震時の変動状況を 予め解析により求め、これを図-5に示すような履歴に 単純化し、せん断力に対応させて制御した。軸力は変動 軸力とし、L-1、L-2 および L-5 では軸力比にしてη=0 ~0.4、L-6 では 0~0.45 の範囲で与えた。加力方向は 正加力時に隅角部が圧縮となる斜め45°方向とした。

			表-1	試験体の緒テ	Ē		柱主筋□10(5□390)
試験体名		L-1	L-2	L-5	L-6	→ 「 <u>福田市市市市市市市市市市市市市市市市市市市市市市市市市市</u>	
断面寸法 壁厚 D		134					
	(mm)	壁せい L		67	70		[L-5、L-6]/ <u>壁横肋/壁靴肋D6(SD390)</u> 正
内	法高さ	h (mm)		19	40		
加ナ	り点高さ	H (mm)		21	40		
コンク	リート強度	$Fc (N/mm^2)$	60		80	60	
	柱筋		16-D10 (SD390)	17-D10 (SD390)	10-D10 (SD390)	+2-D16 (SD490)	1D=134 268 2D=268
端	11.10	pg(%)	3.16	3.36	6.	18	│ ↓ 1 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2
部		面内	3-D4 (SD	295)@40	3-D4 (SD	785)@40	
柱	拘古銘	pw(%)	0.	70	0.	70	중 - · · · · · · · · · · · · · · · · · ·
望	拘米肋	面外	7-D4 (SD	295)@40	4-D4 (SD	785)@40	
		pw(%)	0.	82	0. 93		端部柱型 壁部 隅角部柱型
	柱筋		26-D10 (SD390) 3. 43		26-D10 (SD390)	+4-D16 (USD685)	2D=268 134 2D=268
		pg(%)			4.92		670 (単位 mm
隅	拘古鉉	突出面内	2-D4 (SD295)@40	2-D4 (SD295)@30	2-D4 (SD	785)@40	
角		pw(%)	0.47	0.63	0.	47	図一3 試験体配肋図(半面)
 棺		突出面外	3-D4 (SD295)@40	3-D4 (SD295)@30	3-D4 (SD	785)@40	◇「「「「」」 ◇「」 ◇ 「」 ◇ 「」 ◇ 「」 ◇ 「」 ◇ 「」 ◇
型	1.17/2011	pw(%)	0.70	0.93	0.	70	
		交差部	4-D4 (SD295)@40	4-D4 (SD295)@30	4-D4 (SD	785)@40	
		pw(%)	0.94	1.25	0.	94	鉛直ジャッキ
	鉛直		2-D6 (SD390)@56 0.85		2-D6 (SD	390)@61	
壁	方向	pw(%)			0.	78	
筋	水平			2-D6 (SD390)@60			
	方向	pw(%)		0.	80		
初期軸力比		0.15FcAw					
加力時の変動軸力比		医動軸力比	0∼0.4FcAw	0∼0.4FcAw	0∼0.4FcAw	0∼0.45FcAw	
加力方向			45°				
ただ	し、拘束筋	筋の配筋ピッチ	→ ・ 子は下部範囲について記述しており、全体の配筋ピッチは図−2を参照			- 10 11 11 11 11 11 11 11 11 11 11 11 11	
		主0		のキナӿリョチᠮᆇ	古		
		衣一2	コンクリート	~りりが 料試験1	旦		

長-2 コンクリートの材料試験値	I
------------------	---

試驗体	設計基準強度	圧縮強度	圧縮強度時	割裂強度	弾性係数
产场大学	(N/mm^2)	(N/mm ²)	ひずみ(%)	(N/mm ²)	$ imes 10^3$ (N/mm ²)
L-1	60	58.9	-	4.2	31.5
L-2	00	67.1	0.27	4.6	37.0
L-5	80	89.8	0.29	4.2	37.8
L-6	60	65.5	0.28	4.1	32.7

表						
試驗休	呼び名	降伏強度	降伏ひずみ	引張強度	弾性係数	
的研究中	(材質)	(N/mm ²)	(%)	(N/mm^2)	$ imes 10^3$ (N/mm ²)	
	D4 (SD295)	388	0.22	531	180	
L-1	D6 (SD390)	421	0.25	568	172	
	D10(SD390)	431	0.28	588	172	
	D4 (SD295)	401	0.20	559	193	
L-2	D6 (SD390)	486	0.25	631	191	
	D10(SD390)	410	0.22	638	191	
	D4 (SD785)	927	0.51	1027	183	
тг	D6 (SD390)	446	0.24	617	188	
L-5 L-6	D10(SD390)	435	0.23	600	186	
ЦО	D16(SD490)	538	0.29	698	189	
	D16 (USD685)	733	0.38	921	193	

291

2140 2700

-259

軸力N

 $\eta_{max}F_{c}A_{w}$

長期軸力

 $0.15F_{c}A_{v}$

図-5 変動軸力の加力履歴

3. 実験結果

3.1 荷重-変形角関係

この実験における加力方法では、試験体の変形角が 大きくなるにつれ、図-6に示すようにアクチュエータ とジャッキには傾きが生じる。軸力を与える鉛直方向の ジャッキとアクチュエータが傾くと、水平方向成分の力 が生じるため、試験体脚部に付加曲げモーメントが生じ る。また、水平方向のアクチュエータが傾くと、その作 用線と初期の加力点高さに差が生じるため、付加曲げ モーメントが生じる。既報¹⁾では鉛直ジャッキの影響 について、軸力による付加せん断力(P-δ効果)は生じて いないと考えていた。本報では鉛直ジャッキによる影響 を見直し、鉛直ジャッキと水平アクチュエータによる付 加曲げモーメントの和を、初期の加力点高さで除した値 を付加せん断力とし、水平方向のアクチュエータの測定 値に加えて、せん断力を補正した。

各試験体の荷重-変形角関係を図-7に示す。なお、 荷重は補正した水平せん断力Qである。Fc 60のL-1と L-2 では R=-1/400 の時に隅角部に曲げひび割れが発生 した。R=+1/200 に隅角部脚部に圧壊が発生し、隅角部 柱主筋が圧縮降伏した。R=+1/67 に隅角部脚部から中段 部にかけて圧壊が進展し、R=+1/33 に最大耐力を示し、 その後耐力は低下した。Fc 80 のL-5 では、R=-1/800 の 時に隅角部に曲げひび割れが発生した。R=+1/200 に隅 角部脚部に圧壊が発生し、隅角部柱主筋が圧縮降伏し、 R=+1/67 に端部柱主筋が引張降伏した。正加力時、負加 力時ともに R=1/33 に最大耐力を示した。Fc 60 の L-6 は、L-5 とほぼ同様の破壊性状を示し、最大耐力につい てもほぼ同じ値を示した。また、L-1 および L-2 と比較 すると、L-6 は同様の破壊性状を示しており、最大耐力 についても、正加力時はほぼ同じ値を示し、負加力時は L-1 と L-2 のおよそ 1.5 倍の値を示した。また、L-5 は 他の試験体よりも高強度のコンクリートを用いたにもか かわらず、最大耐力に差が見られなかった。

補正せん断力 $Q = Q' + (\Delta M_1 + \Delta M_2 - \Delta M_3) / H$

図-7 荷重-変形角関係

3.2 破壊性状

各試験体の R=1/100 および最終のひび割れ状況を図-8に示す。L-1 では、R=-1/800 時に隅角部において曲げ ひび割れが発生し、R=+1/200 時に隅角部柱主筋の圧縮 降伏および壁脚部においてコンクリートの圧壊が発生し た。R=+1/50 時において隅角部の拘束筋が降伏したこと で隅角部のかぶりコンクリートの圧壊が進行し、 R=+1/33 時に最大耐力に達した。その後、R=+1/20 まで の片押しで隅角部脚部における圧壊領域の拡がり、せん 断力および軸力が低下した。隅角部の拘束筋をL-1より 密に配筋した L-2 では、R=-1/400 時に隅角部において 曲げひび割れが発生し、R=+1/200 時に隅角部柱主筋の 降伏および壁脚部における圧壊が発生した。R=+1/100 時に隅角部拘束筋が引張降伏し、R=+1/33 で最大耐力に 達した。その後は、隅角部脚部における圧壊領域の拡が りとともに、耐力が低下した。

端部の拘束領域を小さくし、隅角部および端部に芯 筋を配した試験体の破壊性状は、他の試験体よりもコン クリート強度が高い L-5 では、R=-1/800 時に隅角部に おいて曲げひび割れが発生し、R=+1/200 時に隅角部柱 主筋の降伏および壁脚部における圧壊が発生した。正加 力側は R=+1/33、負加力側は R=-1/50 まで加力したが、 耐力の低下は見られなかった。L-5 と配筋は等しく、L-1 や L-2 と同じコンクリート強度とした L-6 では、R=-1/800 時に隅角部において曲げひび割れが発生し、 R=+1/200 時に隅角部柱主筋の降伏、R=+1/100 時壁脚部 における圧壊が発生した。正加力側、負加力側ともに R=1/33 まで加力したが、耐力の低下は見られなかった。

最終のひび割れ状況を見ると、拘束筋に高強度の鉄筋を用いた L-5 および L-6 は、L-1 および L-2 に比べる と圧壊領域の広がりが小さい一方、隅角部の脚部にせん 断による鉛直方向のひび割れが生じている。この理由の 1 つとして、隅角部の拘束範囲 2D を 1D ごとに分けて拘 束したことにより、その間の領域のせん断補強筋が不足 し、軸力が大きいためにせん断によるひび割れが生じた ことが考えられる。

3.3 壁脚部のひずみ分布

壁脚部に変位計を設置し、測定した鉛直変位により求 めた L-5 と L-6 の正加力時における平均ひずみ分布を図 -9に示す。両試験体ともに直線状のひずみ分布を示し ており、平面保持が成立している。また、正加力時の壁 脚部の柱主筋のひずみ分布を図-10 に示す。測定位置 は脚部から 20mm の高さであり、ひずみゲージにより測 定した値である。なお、図中の破線は柱主筋の降伏ひず み (L-5 と L-6: 0.23%、L-2: 0.22%) を示している。 いずれの試験体も、変形角が小さいうちは柱主筋のひず みが直線上に分布しており、概ね平面保持が成り立って いる。変形角が 1/200 より大きくなると、L-5 と L-6 で は拘束筋を 1D ごとに分けた位置(C6-C9 間)を境界と して主筋ひずみが大きくなっており、隅角部の拘束範囲 2D を一体で拘束した L-2 と比べて分布傾向に若干の違 いが見られる。この付近では隅角部の脚部に鉛直ひび割 れが生じており、それによる影響と推察される。また、 隅角部と端部に高強度の柱芯筋を配したが、外周部の柱 主筋のひずみの進行から類推すると、曲げ耐力の向上に 寄与していたと考えられる。

図-8 各試験体のひび割れ状況

3.4 拘束筋のひずみ分布

正加力時の壁脚部の拘束筋のひずみ分布を図-11 に 示す。測定位置は脚部から 40mm の高さであり、壁厚方 向のひずみ分布を示している。なお、図中の破線は拘束 筋の降伏ひずみ(L-5とL-6:0.50%、L-2:0.20%)を 示している。いずれの試験体においても、正加力時に圧 縮を受ける隅角部拘束筋のひずみが大きく、負加力時に 圧縮を受ける端部拘束筋のひずみの増大はあまり見られ なかった。L-2 は R=+1/100 の時に隅角部の拘束筋(H15) が降伏し、その後のサイクルで急激にひずみが増大して いる。最終的には隅角部の拘束筋のほとんどが降伏して いる。また、図には示していないが、壁厚方向の拘束筋 は隅角部に近い程ひずみが大きくなっており、壁せい方 向のひずみは壁厚方向のひずみほど大きくならなかった。 L-5 と L-6 では、拘束筋に高強度鉄筋(USD785)を用いた ため、ひずみは小さく降伏には至らなかった。最終サイ クルにおいて、拘束筋に普通強度鉄筋(SD295)を用いた L-2 では降伏ひずみに達していたが、L-5 と L-6 では拘 束筋は高応力に達して隅角部を十分に拘束したものの、 拘束筋の降伏強度には達せず、降伏強度の規格値に相応 する拘束効果は得られていなかったものと考えられる。

3.5 包絡線の比較

荷重と変形角の関係について、拘束範囲等を因子と した L-1、L-2 と L-6 を、コンクリート強度を因子とし た L-5 と L-6 の包絡線を比較して図-12 に示す。L-1 と L-2 は R=1/33 までは同等の耐力と変形性能を有してい る。端部の拘束範囲を小さくし、隅角部および端部に芯 筋を配筋した L-6 は、L-1 および L-2 と比べ、正加力時 は同等の耐力を示しているが、負加力時はおよそ1.5倍 の耐力を示し、隅角部に配した高強度の芯筋による引張 力が耐力の増加に影響していると考えられる。また、L-6よりも高強度のコンクリートを用いた L-5 は、正加力 時、負加力時ともに L-6 と同等の耐力を示し、コンク リート強度の違いによる影響はあまり見られなかった。 この原因としては、L-5 と L-6 の試験体では隅角部と端 部に柱芯筋を加えたことにより過密配筋となり、実構造 物に適応する際には支障はないが、本研究の縮小試験体 ではコンクリートの充填性が悪くなり、試験体のコンク リート強度が想定通りに発現していなかったとも考えら れる。

3.6 曲げ強度

試験体はすべて曲げ破壊したことから、曲げ強度を計 算し、実験値と比較することによって評価する。曲げ強 度の計算方法は断面解析とし、平面保持を仮定したファ イバーモデルを用いて行った。鉄筋の応カーひずみ関係 は完全弾塑性型とした。コンクリートの応カーひずみ関 係は図-13 に示す Kent-Park モデル²⁾を修正して解析 を行った。Kent-Park モデルでは最大強度時のひずみは 拘束領域、非拘束領域ともに 0.2%とされているが、今

回は拘束領域の計算には崎野らの提案式³⁾を用い、横 拘束によるひずみの増分が適切に評価されるように修正 した。拘束効果に関しては、図-14 に示すように断面 の拘束領域をA~Cの3つの領域に分け、長方形断面で は拘束筋壁厚方向の特性を用いた。L-5 および L-6 は拘 束筋が降伏に至らなかったため、最大耐力を示した R=+1/33 における隅角部柱型の拘束筋の平均ひずみを降 伏ひずみで除すことにより解析を行った⁴⁾。したがって、 拘束筋の効果については高強度鉄筋と普通強度鉄筋の差 はほとんどないとして解析を行ったことになる。

最大曲げ強度の実験値および計算値を表-4に示す。 L-1 および L-2 については、正加力時および負加力時と もに曲げ強度の計算値が実験値よりも小さい値を示して おり、安全側の評価と考えることもできる。L-5 は、正 加力時では計算値が実験値よりも大きい値を示しており、 危険側の評価となっている。コンクリート強度を Fc80 とした L-5 は、配筋が等しく Fc60 とした L-6 とほぼ等 しい実験結果を示しており、コンクリート強度を高くし た効果が表れていないことがわかる。断面解析の計算値 から判断すると、材料試験においては設計基準強度以上 の強度に達していたが、充填性などが影響して、L-5の 試験体では設計基準強度に達していなかったのではない かと推察される。また、負加力時では計算値が実験値を 若干下回っている。L-6 は、正加力時では実験値と計算 値が良い対応を示しており、負加力時では計算値が実験 値を若干下回っている。いずれの試験体においても、軸 力が0となる負加力時の最大耐力に関しては小さく評価 する傾向があった。

表-4 曲げ強度の実験値と計算値の比較

2+EA /-	加力	実験値	曲げ強度計算値		
武卿1平	方向	$_{exp}Q(\mathrm{kN})$	$_{cal}Q_{fu}(\mathrm{kN})$	$_{exp}Q$ / $_{cal}Q_{fu}$	
T 1	正	406	329	1.23	
L-1	負	-220	-164	1.34	
T O	正	416	356	1.17	
L-Z	負	-220	-163	1.35	
I F	正	409	497	0.82	
L-9	負	-297	-263	1.13	
LG	正	412	429	0.96	
L-0	負	-315	-256	1.23	

expQ:実験値、calQfu:曲げ強度計算値

4. まとめ

センターコア構造への採用を目的としたL形コア壁の 試験体の加力実験を行った結果、以下の知見が得られた。

- i. 柱型と壁からなり、隅角部の柱型拘束範囲を 2D、
 端部の柱型拘束範囲を 1D としたL形コア壁は、
 45°方向の加力において限界変形角 R=1/33 を確
 保でき、十分な靱性を有している
- ii. L形コア壁の隅角部や端部に柱芯筋を配することで、変動軸力比η_{max}=0.45の高軸力に対しても脆性的な破壊には至らず、柱芯筋は曲げ耐力の向上にも寄与している
- iii. コンクリート強度を 80N/mm² とした試験体 (L-5) では、隅角部の拘束範囲 2D を 1D ごとに分け た領域の境界の壁脚部に鉛直方向のせん断ひび割 れが生じ、この影響等により水平耐力が増加せず、 コンクリート強度を 60N/mm² とした他の試験体と 比較して強度を上げた効果が得られなかった
- iv. 柱型拘束筋に高強度鉄筋を用いた試験体(L-5、 L-6)では、拘束筋の降伏強度に相応する拘束効 果が得られないことがわかり、それを考慮した ファイバーモデルによる断面解析では、実験値を 良く評価することができる

5. あとがき

L形コア壁の構造性能を把握するとともに、最大強度 の評価法について検討することができた。今後は得られ た知見をもとに、L形コア壁を用いた超高層建物の設計 法を確立したい。

本加力実験は筑波大学の今井研究室の協力を得て実施 した。今井弘教授をはじめ関係された方々に謝意を表す。

【参考文献】

- 山上 聡、細矢 博、舟木秀尊、岡 靖弘、「鉄筋コンクリートL型コア壁の構造性能に関する実験的研究」、奥村組技術研究年報、No. 33、pp. 89-94、2007
- 2)Scott, B. D., Park, R. and Priestley, M. J. N., "Stressstrain behavior of concrete confined by overlapping hoops at low and high strain rates", ACI J., vol. 79, No. 1, pp. 13-27, 1982
- 3) 崎野健治、孫 玉平、「直線型横補強材により拘束さ れたコンクリートの応力-ひずみ関係」、日本建築学 会構造系論文集、No. 461、pp. 95-104、1994
- 4)保坂 剛、今井 弘、松永健太郎、舟木秀尊、細矢 博、岡 靖弘、「鉄筋コンクリートL型断面耐震壁の 構造性能に関する実験的研究 (その3 結果分析)」、 日本建築学会大会学術講演梗概集、2008.9 (投稿 中)